

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 1 of 50 2023-12-19

Rail to Digital automated up to autonomous train

operation

D29.2 – Investigation of solution approaches for

DevOps and architectural evolvability from other domains

Due date of deliverable: 2023-12-01

Actual submission date: 2023-12-19

Leader/Responsible of this Deliverable: Deutsch, D.; SMO

Reviewed: Y

Document status

Revision Date Description

01 2023-12-19 First issue

Project funded from the European Union’s Horizon Europe research and innovation

programme

Dissemination Level

PU Public X

SEN Sensitiv – limited under the conditions of the Grant Agreement

Start date: 2022-12-01 Duration: 42 months

Ref. Ares(2023)8794085 - 21/12/2023

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 2 of 50 2023-12-19

ACKNOWLEDGEMENTS

This project has received funding from the Europe’s Rail Joint Undertaking

(ERJU) under the Grant Agreement no. 101102001. The JU receives support

from the European Union’s Horizon Europe research and innovation programme

and the Europe’s Rail JU members other than the Union.

REPORT CONTRIBUTORS

Name Company Details of Contribution

Arrizabalaga, Saioa CEIT DevOps, 2nd opinion, review

Figueroa, Santiago CEIT DevOps, 2nd opinion, review

Roelle, Harald SMO 2nd opinion, review

Deutsch, Dominik SMO Architectural evolvability, 2nd opinion, review

Oertel, Norbert SMO 2nd opinion, review

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the

information is fit for any particular purpose. The content of this document reflects only the author’s

view – the Joint Undertaking is not responsible for any use that may be made of the information it

contains. The users use the information at their sole risk and liability.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 3 of 50 2023-12-19

EXECUTIVE SUMMARY

Software needs to be adapted over its lifetime for several reasons, as discussed in the

previous deliverable D29.1 [1]. To enable and support this and to avoid software erosion, an

evolvable software architecture and appropriate processes are necessary. In this deliverable

the working group investigates concrete solutions and approaches for DevOps and

architectural evolvability from other domains as some of these might also be applied or

adapted for the railway domain.

First, the working group focuses on DevOps as methodology that brings together practice

of software development and operations to improve collaboration, communication, and

efficiency throughout the entire software development process. Such considerations as the

nature of systems, risk tolerance, regulatory compliance, and scale and complexity can vary

significantly between Information Technology (IT) and Operational Technology (OT)

environments due to domain-specific requirements. For example, just by considering the

impact of a cyber-attack on a safety-critical environment, both safety and security constitute

critical factors that differ between IT and OT DevOps approaches. For this reason, the

working group analyzes the state of the art of DevOps on OT environments, including

sectors like automotive, avionics and railway to analyze the main approaches for OT

environments from a safety and security perspective. They also analyze how DevOps

approaches OT environments from the perspective of leading safety (IEC 61508) and

security standards (ISA/IEC 62443-4-1). Finally, a practical analysis is performed, where

based on a selected user story from deliverable D29.1 [1] an attempt is made to approximate

the set of associated DevOps stages and to characterize required tooling for each stage.

Next steps will include to cover more user stories from D29.1 [1] by the DevOps methodology

and to bring it closer to the railway domain considering the different standards.

In the second part of this deliverable, the working group summarizes and structures the

results of a literature research on architectural evolvability. The focus is on the domains

automotive, avionics and industrial automation. However, literature from other domains

(e.g., enterprise IT) as well as domain-unspecific literature is also considered. First, some

characteristics and current architectures of the mentioned domains are described as their

general set-ups and conditions, some of which differ from the railway domain, must be

considered when evaluating the found solutions. Subsequently, the solutions and

approaches for evolvable software architectures found in the literature are listed and

mapped to the non-functional properties and user stories from the previous deliverable

D29.1 [1], which they primarily address. For the listing, the solution approaches are grouped

into architectural patterns, techniques and methodologies, concepts and principles, concrete

solutions and approaches, and metrics. Finally, a potential applicability within the railway

domain is outlined. Next steps will be to analyze and evaluate the found solution approaches

from the other domains in more detail with the aim of creating a catalogue of solution

approaches for architectural evolvability that are applicable within the railway domain.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 4 of 50 2023-12-19

ABBREVIATIONS AND ACRONYMS

AAL Architecture Analysis Language

ADL Architecture Description Language

AFDX Advanced Full Duplex Network

ANSI American National Standards Institute

AI/ML Artificial Intelligence/Machine Learning

ALMA Architecture-Level Modifiability Analysis

AP Adaptive Platform

API Application Programming Interface

ARINC Aeronautical Radio Incorporated

AUTOSAR Automotive Open System Architecture

BPMN Business Process Model and Notation

CAAS Common Avionics Architecture System

CAN Controller Area Network

CBSE Component-Based Software Engineering

COTS Commercial off-the-shelf

CP Classic Platform

CPPS Cyber-Physical Production Systems

CPS Cyber-Physical System

DDS Data Distribution Services

DEMO Design and Engineering Methodology for Organizations

DevOps Development and Operations (Methodology)

DoD Department of Defense

DSL/DSML Domain-Specific (Modeling) Language

EAS Evolvable Assembly Systems

ECU Electronic Control Unit

EDGSS Emergency Diesel Generator Startup Sequencer

EPS Evolvable Production Systems

FMS Flexible Manufacturing System

FPGA Field Programmable Gate Arrays

HAL Hardware Abstraction Layer

HMS Holonic Manufacturing System

HW Hardware

ICS Industrial Control System

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 5 of 50 2023-12-19

ID Identifier

ICT Information and Communications Technology

IEC International Electrotechnical Commission

IIoT Industrial Internet of Things

IMA Integrated Modular Avionics

IPC Industrial PC

ISA International Society of Automation

ISO International Organization for Standardization

IT Information Technology

JADE Java Agent Development Environment

LAN Local Area Network

LIN Local Interconnect Network

MAS Multi-Agent Systems

MDA Model-Driven Architecture

MDD Model-Driven Development

MDSD Model-Driven Software Development

MILS Multiple Independent Levels of Security and Safety

MOSA Modular Open Systems Approach

NFP Non-functional property

NFR Non-functional requirement

OCI Open Container Initiative

OEM Original Equipment Manufacturer

OPC-UA Open Platform Communication-Unified Architecture

OS Operating System

OSA Open System Architecture

OT Operational Technology

OWASP Open Web Application Security Project

PLC Programmable Logic Controller

PLE Product Line Engineering

QDSA Quality-Driven Software Architecture

QoS Quality of Service

RAAM Recovering Architectural Assumptions Method

RACE Robust and Reliant Automotive Computing Environment

RMS Reconfigurable Manufacturing System

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 6 of 50 2023-12-19

RTOS Real-Time Operating System

R2DATO Rail to Digital automated up to autonomous train operation

SAFe Scale Agile Framework

SAOL System Architecture Optimization Language

SBOM Software Bill of Material

SDK Software Development Kit

SOA Service-Oriented Architecture

SOME/IP Scalable Service-Oriented Middleware over Internet Protocol

SW Software

S2C Security Standard Compliant

TCP Transport Control Protocol

TSP Time and Space Partitioning

TTE Time Triggered Ethernet

UAM Urban Air Mobility

VM Virtual Machine

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 7 of 50 2023-12-19

TABLE OF CONTENTS

Acknowledgements ... 2

Report Contributors ... 2

Executive Summary .. 3

Abbreviations and Acronyms .. 4

Table of Contents.. 7

List of Figures ... 8

List of Tables .. 8

1 Introduction ... 9

2 DevOps ... 11

2.1 DevOps in different operational technology application domains 11

2.2 Security and safety in DevOps lifecycle of operational technology environment 12

2.2.1 Comparison of IEC 61508 and ISA/IEC 62443-4-1 .. 12

2.2.2 Security on DevOps from ISA/IEC 62443-4-1 perspective 13

2.2.3 Safety on DevOps from IEC 61508 perspective ... 14

2.3 Practical approach of DevOps over railway domain .. 15

2.3.1 Context .. 16

3 Software architecture evolvability .. 20

3.1 Current architectures and characteristics of other domains ... 20

3.1.1 Automotive ... 20

3.1.2 Avionics ... 21

3.1.3 Industrial automation ... 22

3.1.4 Other domains ... 22

3.2 Solution approaches for evolvability from other domains .. 23

3.2.1 Architectural patterns, techniques and methodologies ... 23

3.2.2 Concepts and principles ... 28

3.2.3 Concrete solutions and approaches ... 33

3.2.4 Metrics ... 37

3.2.5 Applicability of approaches within railway domain .. 40

4 Conclusions .. 43

References ... 44

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 8 of 50 2023-12-19

LIST OF FIGURES

Figure 1. Global DevOps market size by application [6]. ... 10

Figure 2. Framework to map security and safety standards over DevOps. 12

Figure 3. Security standard compliant DevOps pipeline for the IEC 62443-4-1 standard [19]. 13

Figure 4. The SafeScrum process with a DevOps approach [22]. ... 15

Figure 5. Definition of Software Bill of Materials (SBOM). ... 16

LIST OF TABLES

Table 1. User story selected [1]. .. 16

Table 2. User story abbreviated [1]. .. 16

Table 3. User story mapping. .. 19

Table 4. Architectural patterns, techniques and methodologies. .. 27

Table 5. Concepts and principles. ... 32

Table 6. Concrete solutions and approaches from avionics domain. ... 34

Table 7. Concrete solutions and approaches from automotive domain. .. 34

Table 8. Concrete solutions and approaches from industrial automation domain. 36

Table 9. Concrete solutions and approaches from other domains. .. 37

Table 10. Metric approaches from other domains. .. 40

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 9 of 50 2023-12-19

1 INTRODUCTION

The erosion of software architecture leads to problems like the increase of cost for changes

and extensions, the decrease of non-functional properties (NFPs), and the degradation of

software quality [2]. While in some areas for individual software projects or new products

everything can be developed from scratch, this is usually not possible in many other areas

due to time and cost reasons. To be able to keep pace with technology development and

remain competitive, for example, it may be necessary to (continuously) adapt an existing

software architecture over time. But change will become more difficult over time unless the

software system is designed to be evolvable [3].

Software architecture evolvability describes the software architecture’s capability to

accommodate changes [2]. It is important to note that the described capability cannot be

achieved by focusing on single architectural aspects. Software evolvability is a multifaceted

quality attribute [4]. But according to [5] “most studies focus on particular quality attributes

such as adaptability, and do not cover the wide spectrum of evolvability subcharacteristics”

and only “few studies explicitly address software evolvability”. In this work multiple “sub

characteristics” or “quality attributes”, specifically the non-functional properties collected in

D29.1 [1], are addressed.

The base for evolvability is a “good” architecture.

A “good” software architecture can be evaluated qualitatively (e.g., reviews) or quantitatively

(e.g., metering) based on (non-functional) properties or metrics and achieved by applying

appropriate methodologies, concepts, design principles or patterns.

But evolvability is not only about the software architecture. It needs to be addressed over

the complete software lifecycle [5]. The DevOps approach can contribute to this. Deliverable

D29.1 [1] already defines the concept and applicability of DevOps. This work proposes to

study the DevOps paradigm in depth from the perspective of industrial environments

(particularly in the railway domain) with special emphasis on both cybersecurity and safety.

The DevOps market has observed significant demand for agility in development, testing,

and Information Technology (IT) operations. DevOps tools tightly integrate the design &

development of applications with the deployment and delivery lifecycle, enabling enterprises

to efficiently manage their IT resources. This also leads to reduced capital expenditure and

increased market competitiveness by reducing software delivery cycles. In addition, the

demand for automated defect detection and standardization of development stack is to

create new market opportunities for development & operations tools (Figure 1).

The increasing importance of software and rising level of connectivity of Operational

Technology (OT) products (e.g., safety-critical) such as vehicles, require continuously

improving and adding functionality. However, it requires more guidance and a more

structured approach for software assurance is needed through further standardization, and

adoption of improved procedures and guidance to support certification of safety-critical

assets. This is where DevOps emerges as a paradigm that promises to successfully impact

all stages of the software lifecycle. However, in the OT sectors, security and safety are the

cornerstones. OT software (particularly in safety-critical environments) demands a

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 10 of 50 2023-12-19

comprehensive security and safety case that usually refers to a set of documents with

arguments and evidence showing the product’s security and safety, i.e., the security and

safety artifacts. Hence, there are rigorous standards related to the design, implementation,

and deployment of the software lifecycle, such as International Society of

Automation/International Electrotechnical Commission (ISA/IEC) 62443-4-1, IEC 61508,

and ISO 26262. Therefore, unlike the IT world in the context of OT, the value of DevOps is

tied to security and safety concepts.

Figure 1. Global DevOps market size by application [6].

The concrete solutions and approaches for a good and evolvable software architecture as

well as for DevOps processes depend heavily on the environment and required conditions

(e.g., real-time, or safety-critical) and on the respective domain (e.g., enterprise IT,

automotive, avionics or industrial automation). But many approaches can also be applied to

different domains. So, the railway domain can be inspired by approaches from domains with

fundamentally other conditions (such as enterprise IT) and adopt or transfer solutions from

domains with similar requirements for real-time and safety (such as automotive, avionics or

industrial automation).

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 11 of 50 2023-12-19

2 DEVOPS

In this section we intend to start with a brief study that illustrates the usability of DevOps in

different OT sectors. The value of security and safety in the OT context leads to the analysis

of the security and safety in DevOps Lifecycle. Finally, a mapping of user stories defined in

deliverable D29.1 [1] is developed around a secure DevOps approach.

2.1 DEVOPS IN DIFFERENT OPERATIONAL TECHNOLOGY APPLICATION DOMAINS

1) Automotive: There are contributions from automotive environments on DevOps. For

example, a first approach specifies how the automotive (software) development

lifecycle is expected to evolve towards a DevOps-oriented development process [7].

The authors have proposed a DevOps framework covering the full vehicle lifecycle

ranging from development, to production, to operation. A second approach

introduces the SafeOps concept that leverages the DevOps principles automation,

feature-driven development, and monitoring during operations to fulfill the

requirements of the ISO 26262 when iteratively extending and improving safety-

critical products [8].

2) Avionics: There are also contributions from avionics environments on DevOps. For

example, a first approach indicates that for Urban Air Mobility (UAM) manufacturers

to succeed in the marketplace, it is necessary to leverage DevOps development

practices and hardware virtualization to reduce overall lifecycle costs and, in turn,

ensure the ability to meet the customer’s vehicle safety and cost requirements [9]. A

second approach describes a study that resulted in a set of software architecture

principles intended to help with sustainability-driven design and monitoring. The

framework given focuses on the aviation industry in particular [10].

3) Department of Defense (DoD): DoD has established DevSecOps capabilities to

deliver applications rapidly and in a secure manner, increasing the warfighters

competitive advantage, bake-in and enforce cybersecurity functions and policy from

inception through operations, enhance enterprise visibility of development activities

and reduce accreditation timelines, ensure seamless application portability across

enterprise, Cloud and disconnected, intermittent and classified environments and

drive DoD transformation to Agile and Lean Software Development and Delivery [11].

As part of this process, several technologies, and tools from different environments

(e.g., cloud) have been integrated. For instance, the use of Kubernetes at DoD

reduced the software deployment effort from eight months to one week [12].

4) Railway: There are some shy approaches to DevOps integration in railway both from

the business perspective and from the scientific literature. On the one hand, [13]

refers to the application of DevOps to the propulsion system development process,

along with advanced physical modelling techniques and innovative uses of AI/ML for

automation. On the other hand, the scientific paper approaches DevOps from the

perspective of Design-Operation Continuum methods to provide solutions in order to

have a more efficient process which guarantees that (1) software updates are

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 12 of 50 2023-12-19

performed safely and securely, (2) most of the faults are detected in the design phase

before the software is deployed in the CPS and (3) problems that can emerge in

operation can be reproduced in development in order to analyze and propose

potential solutions [14]. The use case where the proposed taxonomic review is put

into practice is Bombardier Transportation [14]. Although this use case illustrates a

DevOps approach in railway environments, it is currently outdated.

2.2 SECURITY AND SAFETY IN DEVOPS LIFECYCLE OF OPERATIONAL TECHNOLOGY

ENVIRONMENT

From the previous sections it can be summarized that DevOps is a technology that is

progressively penetrating operational technology environments, and at the same time, its

adoption is intrinsically tied to security. Figure 2 establishes a relationship between two of

the most important safety and security standards: ISA/IEC 62443-4-1 and IEC 61508.

Although they are not the only security and safety standards, they are two of the most widely

known, hence the approach of studying them. In addition, it proposes a mapping of these

two standards onto DevOps as a framework. Currently there is a defined DevOps standard

(ISO/IEC 32675), but it is highly linked to IT environments. For this reason, the potential

relationship from the OT point of view is considered on discontinuous lines.

Figure 2. Framework to map security and safety standards over DevOps.

2.2.1 Comparison of IEC 61508 and ISA/IEC 62443-4-1

With the appearance of malware and nation state attacks on Industrial Control Systems

(ICS), such as the Stuxnet (2010), Industroyer (2016) and TRITON (2017) attacks, safety

system assets become targets [15]. More and more safety equipment OEMs (Original

Equipment Manufacturer) are seeking to certify their products to both IEC 61508 Functional

Safety requirements as well as ISA/IEC 62443 Cybersecurity requirements [15].

Development requirements concentrate on processes to ensure a good understanding of

what it is going to be built, how it is going to be built, and that it was built correctly. IEC 61508

and ISA/IEC 62443-4-1 both have development process requirements. Furthermore, these

requirements overlap a great deal, so separate assessment efforts would mean repeating

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 13 of 50 2023-12-19

assessment of common requirements. By identifying what process requirements are in

common between IEC 61508 and ISA/IEC 62443-4-1 and showing that the IEC 61508

process requirements meet the ISA/IEC 62443-4-1 process requirements, the cost of

developing procedures, and assessing procedures for compliance, can be reduced [15].

2.2.2 Security on DevOps from ISA/IEC 62443-4-1 perspective

Several studies demonstrate the integration of an industrial security standard such as

ISA/IEC 62443-4-1 in DevOps environments. The first approach suggested a new way to

achieve continuous and secure development in security domains, specifically in industrial

and automation control systems [16]. To do so, the authors proposed a model-based

approach, which consisted of merging visual representations of security norms and process

models, in particular the Scale Agile Framework (SAFe) and the ISA/IEC 62443-4-1

standard, resulting in a Business Process Model and Notation (BPMN) model [17].

A second approach proposes a concept for a structured and systematic integration of

security activities based on ISA/IEC 62443-4-1 standard into a DevOps pipeline. To achieve

this, the security requirements, as described in the ISA/IEC 62443-4-1 standard, were

mapped into a simple DevOps pipeline specification [18]. The work maps, in detail, the

ISA/IEC 62443-4-1 security flows into the stages of the DevOps framework, in a similar way

to that proposed by [17].

Figure 3. Security standard compliant DevOps pipeline for the IEC 62443-4-1 standard
[19].

A third approach consists of integrating an instance of the ISA/IEC 62443-4-1 standard into

pipelines [19]. Figure 3 shows the integration of the Security Standard Compliant DevOps

Pipeline for the ISA/IEC 62443-4-1. Diagram shows the ISA/IEC 62443-4-1 standard

practices (in yellow), the DevOps stages (in green). Solid vertical arrows depict in which

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 14 of 50 2023-12-19

DevOps stage an ISA/IEC 62443-4-1 practice security activity can take place. Standard

security activities impact several repositories (in brown) like backlog, code base and test,

pre-production, and production environments. In addition, security standards demand an

explicit repository for documentation and logs maintenance. Continuous practices (gray

arrows) describe the flows to which the security activities also apply [15]. The main artefact

of this approach is the Security Standard Compliant S2C DevOps Pipeline Specification.

The methodology was tested in the context of a large industrial company that operates in

the ICS market, providing that the automation extent of this standard is 31% *Complete*, it

means that 31% of the ISA/IEC 62443-4-1 requirements can be fully automated. 38% of the

ISA/IEC 62443-4-1 requirements are manual tasks that must be executed by a human

expert, while the remainder has the potential to be at least partially automated with future

tools and techniques [19].

A fourth approach integrates security into agile software development in strongly regulated

industries, complexity increases not only when scaling agile practices but also when aiming

for compliance with security standards. For that purpose, the authors present the framework

S2C-SAFe and its evaluation by agile and security experts within Siemens’ large-scale

project ecosystem. They discuss benefits and limitations as well as challenges from a

practitioners’ perspective. The overall aim of their work is to improve product development

lifecycle by integrating requirements of ISA/IEC 62443-4-1 into Scaled Agile Framework

(SAFe), resulting in the “Security Standard Compliant Scaled Agile Framework” (S2C-SAFe)

[20].

A fifth approach aims to investigate the evidence and identify its dependencies to develop

and design an artefact model for DevSecOps. This artefact model has the possibility to

measure security compliance with the ISA/IEC 62443-4-1 standard to ensure traceability in

DevOps pipeline and evaluate the usability of it. This research provides the practitioners’

understanding of the usability of the artefact model in the industry to meet the secure

software development product lifecycle requirements according to the ISA/IEC 62443-4-1

standard. The results demonstrated the evidence of assessing the security compliance for

DevSecOps workflow in DevOps pipeline [21].

2.2.3 Safety on DevOps from IEC 61508 perspective

Several studies demonstrate the integration of an industrial safety standard such as IEC

61508 in DevOps environments. However, the starting point of the relationship was not

directly DevOps, which is a relatively recent concept, but rather agile development of safety

critical software. SafeScrum [22], is a framework based on the Scrum process framework

for incremental and iterative development as shown in Figure 4. To be compatible with

requirements found in safety standards, in particular IEC 61508, SafeScrum proposes

additional activities and roles. Requirements are kept in the product backlog in the form of

user stories, and in SafeScrum, functional (not safety related) and safety-related

requirements are kept separately. Simply put, functional user stories come from the users

and safety-stories come from preliminary safety analyses. If a user story is presumed to be

related to a safety story, a reference is inserted. Development is done in sprints, which are

short and repeated work iterations. Each sprint starts with a sprint planning meeting where

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 15 of 50 2023-12-19

stories from the product backlog are prioritized, selected, and broken down into solution

ideas and added to the sprint backlog. Development is done by a fixed team which has a

short status meeting (known as the scrum) regularly, maybe every day, to share progress,

plans and discuss any problems. Development of software should be done according to the

principles of test-driven development, which also assures high test coverage and

documentation of testing. Considering DevOps was built on the principles of agile practices,

but extended them to include operations and automation, an agile safety case approach to

have a DevOps process in place to ensure quick but safe patching (short- term response)

has been implemented to satisfy both safety and security requirements when developing

and operating autonomous vehicles [23]. A third approach demonstrates relation IEC 61508

- DevOps from a design assurance (IEC-61508 Compliant V&V Workflow), runtime safety

and security as a fundamental aspect of the dependable DevOps continuum process. This

work performs verification of an Emergency Diesel Generator Startup Sequencer (EDGSS)

implemented on a Field Programmable Gate Arrays (FPGA) overlay architecture using

model-based verification techniques [24].

Figure 4. The SafeScrum process with a DevOps approach [22].

2.3 PRACTICAL APPROACH OF DEVOPS OVER RAILWAY DOMAIN

This section aims to give a practical view of how to approach DevOps in the railway context

considering the gap identified in the State-of-the-Art study performed in Section 2.1.

Considering that the positions of the ISA/IEC 62443-4-1 and IEC 61508 standards are not

so far apart, we proceed to select from the previous work the most convincing approach,

i.e., that the reference that aligned DevOps closer to ISA/IEC 62443-4-1 [19].

As shown in Figure 3, the first stage of the procedure is constituted by the definition of the

product backlog, which refers to a prioritized list of functionalities which a product should

contain. Therefore, the set of user stories defined in deliverable D29.1 [1] will be used as

the product backlog [1]. To simplify the procedure in this deliverable, which will be extended

in future deliverables, the practical approach to be evidenced consists of selecting a user

story, narrowing its functionality, and moving it through the entire flow of Figure 3, providing

the set of tools that in the literature refer to these stages. Table 1 above shows the selected

user story.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 16 of 50 2023-12-19

ID Actor User Story Driver 1 Driver 2

10007
Train
Manufacturer

As a train manufacturer, I want to generate a
security release of a train software in minimum
time, so that train functionality is not changed, and
re-homologation is not required.

Changeability Verifiability

Table 1. User story selected [1].

The functional complexity evidenced by the second part of the user story, i.e., "so that train

functionality is not changed, and re-homologation is not required" will be analyzed in future

deliverables, hence the user story approach can be summarized in Table 2:

ID Actor User Story Driver 1 Driver 2

10007
Train
Manufacturer

As a train manufacturer, I want to generate a
security release of a train software in minimum
time.

Changeability Verifiability

Table 2. User story abbreviated [1].

2.3.1 Context

There is a Software Bill of Material (SBOM) registry (e.g., CycloneDX data format) that

integrates information related to versions, licenses, libraries, dependencies, author name,

distributor name, open-source component classification of all development and

infrastructure (e.g., K8s version, firmware version, etc.) lifecycle (Figure 5). Comprehensive,

end-to-end SBOM management reduces risk and increases transparency in software supply

chains.

Figure 5. Definition of Software Bill of Materials (SBOM).

A vulnerability is identified in one of the dependencies used in the production application. It

is necessary to rebuild the application and perform the delivery in the shortest possible time,

updating in each case the SBOM. The following requirements are assumed:

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 17 of 50 2023-12-19

1. Delivery is made on industrial railway devices (e.g., Ruggedcom VPE1400 [25]) that

provides a virtualized environment to run a guest Linux operating system (e.g.,

RUGGEDCOM ROX II, a Rugged Operating System on Linux) and third-party

applications.

2. GitHub is used as DevOps platform.

The following table (Table 3) relates the Figure 3 DevOps stages to different activities and

purposes for which the user stories will be matched throughout the lifecycle. A set of open-

source tools that help to materialize the integration are included.

DevOps Stage Stage Definition Repository

Plan

Based on the customer need, during this
stage, requirements are represented as
user stories. A repository that provides
compliance evidence is the Backlog.

Backlog: The product backlog is a dedicated
space for defining and prioritizing work a
team will take on now and into the future.
Jira Software ([26]) is a tool example that
can be used for backlog purposes.

Plan

Based on the customer’s need, other kinds
of information (e.g., threat modeling and
product security context). Other repository
that provides compliance evidence is the
Documentation repository.

Documentation: Continuous documentation
can be provided by Readme files or Wikis.
GitHub ([27]) is a tool example that can be
used for documentation purposes.

Code

DevOps establishes that not only
functionalities can be coded, but also
infrastructure and environment
configurations. Automation is possible for
static code analysis.

DevOps recommends that functionalities and
configurations should be stored in the same
repository and integrated into the version
control tool (e.g., GitHub). CodeCov ([28]) is
a Code Quality tool example that generate
and analyze Code Coverage reports.

Build

During this stage, the teams (not only
developers) commit their code. The
continuous integration tool triggers
different security testing tools.

Compile and/or link is related with specific
Framework (e.g., Java [29], .NET [30], Python
[31]).

Build

During Build, security requirements testing
can be done with development
frameworks for behavior-driven
development and unit testing.

Dependency vulnerability checking; scans
your pull requests for dependency changes
and will raise an error if any new
dependencies have existing vulnerabilities,
using, for instance, Dependency Review tool (
[32]).

Test In the test environment, automated and
user acceptance tests can occur. If testing

Open Web Application Security Project
(OWASP) ZAP Full Scan ([33]) is an example

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 18 of 50 2023-12-19

DevOps Stage Stage Definition Repository

is successful, code is merged, and the
application is ready for testing. If testing is
not successful, commit is not merged, and
results of testing tools need to be
synchronized with the security issues
tracking tool to comply with the ISA/IEC
62443-4-1 standard. To achieve
compliance, testing documentation should
exist and be in the documentation
repository. ISA/IEC 62443-4-1 standard
describes four groups of testing: security
requirements testing, threat mitigation
testing, vulnerability testing and
penetration testing.

of testing tool that runs the ZAP spider
against the specified target (by default with
no time limit) followed by an optional ajax
spider scan and then a full active scan before
reporting the results. The alerts will be
maintained as a GitHub issue in the
corresponding repository.

Test

In the test environment, automated and
user acceptance tests can occur including
behavior-driven development and unit
testing.

Automated Tests tools run automated tests
included in your code using framework-
specific tools like pytest, dotnet test, etc for
Framework specific (e.g., Java, .NET, Python).

Test

From the ISA/IEC 62443-4-1 standard point
of view, this is relevant since it allows to
maintain evidence of all security measures,
security issues, licenses used and so on.

SBOM allows scanning the workspace
directory and uploading SBOM artifacts.
Anchore ([34]) is a SBOM tool example.

Release and
deploy

During these phases, the functionalities
that implement the customer’s need are
made available for customers. The release
stage refers to Alfa/Beta releases and
stored into a pre-production repository
and during the Deploy stage to the
production environment. Releases allow to
gather early feedback about the
implemented security measures. During
these stages, penetration testing is
performed with tools that partially
automate the activities. Tools run tests,
identify vulnerabilities, and a team
member manually analyzes and tries to
exploit them.

Considering the requirements assumed there
are two very useful tools at this stage:
ROXupgrade ([35]) and ROXflash ([35]).

Operate and
Monitor

The product is available for Customer use.
Security monitoring, security testing and
compliance checks are highly automated.
Monitoring activities are part of

Datadog ([36]) is an example of monitoring
and observability tool that integrates an
automatic architecture-mapping, monitoring,
and troubleshooting all in one screen for

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 19 of 50 2023-12-19

DevOps Stage Stage Definition Repository

Maintenance and artifacts belong to the
Analytics repository.

your streaming data pipelines to resolve
errors quickly and avoid costly outages.

Table 3. User story mapping.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 20 of 50 2023-12-19

3 SOFTWARE ARCHITECTURE EVOLVABILITY

As discussed in deliverable D29.1 [1] as well as motivated in the introduction, there is a

necessity for software architecture evolvability within the railway domain. In this chapter, the

working group summarizes and structures the results of a literature research across other

domains. For one thing characteristics and current architectures of these domains are

described (see section 3.1), for another thing solution approaches for evolvable software

architectures found in the literature are categorized and listed (see section 3.2).

The results will serve as a basis for deeper analyses and evaluation of selected approaches

regarding their potential applicability within the railway domain in the next step (D29.3).

3.1 CURRENT ARCHITECTURES AND CHARACTERISTICS OF OTHER DOMAINS

The general set-up and conditions differ in part between the railway domain and the other

domains examined. This must be considered when evaluating the found solutions. For this

purpose, some central characteristics, properties, and architectures of other domains are

described below. In particular, the domains automotive (see subsection 3.1.1), avionics (see

subsection 3.1.2) and industrial automation (see subsection 3.1.3) were examined.

However, other domains (especially non-safety-related IT systems) were also considered

(see subsection 3.1.4).

3.1.1 Automotive

The automotive sector is characterized by its large number of electronic control units (ECU),

some of which are purpose-built [37] [38]. There are also heterogeneous networking

technologies and bus systems (e.g., Controller Area Network (CAN), Local Interconnect

Network (LIN), FlexRay or Ethernet), mainly static communication paths [38] and a signal-

based development [39] [40]. Functions and data are distributed over the in-vehicle network

and the ECUs and there is no unified way to access data [37] [40]. Similarities with the

railway domain are that the development is V-model-based as well as they also face issues

and challenges regarding [38] homologation or certification [37] [39] and security and safety

[39]. There is a trend for centralization [41] leading to a smaller number of processing units.

Another trend is the inclusion of suppliers and third-party contributors within development

and test procedures [42].

Standardization within the automotive industry is driven by the AUTOSAR (Automotive Open

System Architecture) development partnership aiming for standardized basic system

functions and functional interfaces and an open E/E system architecture [43]. The ubiquitous

software platform in this industry is the AUTOSAR Classic Platform. It is “used for deeply

embedded systems and application software with high requirements for predictability,

safety, security and responsiveness” [43]. The architecture distinguishes at the highest level

of abstraction between the three software layers application, runtime environment and basic

software [43]. AUTOSAR provides an architecture to develop software components

independent from specific base-hardware and operating system [44] and defines the

language for designing and configuring automotive software architectures [45]. According to

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 21 of 50 2023-12-19

[46], resolving connectors at design time via generators has enabled component-based

software engineering (CBSE) for distributed control systems in the automotive domain. One

concept of AUTOSAR is the definition of distributed embedded applications independently

from a concrete deployment and the allocation to computing nodes in a later engineering

step [46].

One disadvantage of current automotive software architectures is the mainly static

communication so that changes in applications often require a change in the

“communication matrix” that describes statically bound data channels [42]. To overcome

this, OEMs steadily include more IP-based communication technologies, which support a

better separation of software and hardware [42].

The next generation architecture is the AUTOSAR Adaptive Platform [47]. It consists of

functional clusters grouped into services, where functional clusters must have at least one

instance per (virtual) machine while services may be distributed in the in-car network [47].

In comparison to the Classic Platform, the Adaptive Platform dynamically links services and

clients during runtime [47]. It is a solution for more performant ECUs and is designed to meet

the requirements of highly automated vehicles [43]. For communication it supports DDS

(Data Distribution Services) [37] and SOME/IP (Scalable Service-Oriented Middleware over

IP) [37] [39], based on Ethernet-based topologies [38].

3.1.2 Avionics

A prominent characterization within the avionics sector is the time and space partitioning,

i.e. partitioning of computation (time) and memory (space) or also of access or the backplane

[48] [49]. They also rely heavily on the use of commercial off-the-shelf (COTS) components

[50] [51] [52] as well as on standards like ARINC (Aeronautical Radio Incorporated) [53] [51]

[48] [49] [52] [54] [46].

Like in the railway domain, “clean sheet” developments are rare due to the risks involved

[55]. The strategy instead is that the original design must be evolvable. Also, safety and

predictability are extremely important in this sector [49]. This is achieved, among other

things, by partitioning [49].

Of the set of ARINC standards, the most common one with a wide acceptance through its

use by a variety of COTS operating system vendors is the ARINC 653 RTOS standard [48].

It defines an operating environment for application software used within Integrated Modular

Avionics (IMA) [49] for real-time and safety-critical applications [51] [46] using cyclic

scheduling and a preemptive fixed priority-based policy [49] and enforces time and space

constraints to be statically defined before execution [10]. The ARINC standards also define

communication models for local communication, e.g., shared memory and message

queues, as well as for distributed communication, e.g., Advanced Full Duplex Network

(AFDX), DO-178B TCP/IP or Time Triggered Ethernet (TTE) [51].

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 22 of 50 2023-12-19

3.1.3 Industrial automation

In the industrial automation, there are many different forms with different characterizations.

These include distributed control [46], multi-agent systems [56], smart devices [56],

intelligent sensors [57], autonomous robotics [57], cloud computing [57], Industrial PCs

(IPCs) [46] or up-to-date approaches like Evolvable Production Systems (EPS) [56] [58] and

Cyber-Physical Production Systems (CPPS) [46] [59] for example. But there is one

characteristic what many solutions in industrial automation (at least the traditional ones)

have in common: Usually Programmable Logic Controllers (PLCs), so special-purpose

microcontroller which continuously runs a program cycle, are used to run control logic [46].

A standard for distributed control systems based on PLCs is the IEC 61499, where

applications consist of function blocks that communicate with each other via events and data

connections [12]. For communication between PLCs there are several industrial standards

like Open Platform Communication-Unified Architecture (OPC UA) (using client/server

model), Profinet (with cyclic sender/receivers) or DDS (based on publish/subscribe pattern)

[46].

Former issues and challenges include the long time for system design, commissioning and

setup, a complex and time-consuming reengineering, incompatibility between different

vendors equipment and legacy systems, and inflexible centralized/hierarchical

implementations [56]. According to [58] also an update of functional safety standards is

required needing significant research activities.

Traditional architectures like the “industrial automation pyramid” focused on integration

between hierarchical layers, such as American National Standards Institute ANSI/ISA-95

from ISO/IEC 62264 version of 2007 [57]. But for more flexible and adaptable production

systems, the lower layers of the pyramid tend to collapse to more “autonomous” CPPS to

enable Industry 4.0 [46].

Trends in the industrial automation domain include edge control using hypervisors, use of

more IT-like technologies and “software-defined manufacturing” which led to research on

potential enablers like industrial internet of things (IIoT), information and communications

technology (ICT) or artificial intelligence (AI), and in general research in the direction of

reconfiguration on process level [46].

3.1.4 Other domains

In other, non-safety-related areas (e.g., typical “IT systems”) the characterizations and

architectures vary to a much greater extent. A few examples for architectural patterns are

client-server, mobile agents [60], model-view-controller, hexagonal architecture, or the

publish-subscribe pattern [61]. Some further architectural patterns or techniques such as

service-oriented architecture (SOA), microservices and containerization [60] are widespread

nowadays and are widely used in a variety of IT systems. The individual, concrete

approaches that were found during the literature research will not be listed or described in

detail here. However, these are included in the listings of the following sections.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 23 of 50 2023-12-19

Due to the mentioned characterizations and architectures, which differ (partially) from the

railway domain, the approaches for evolvability found in the literature (see section 3.2) need

to be analyzed in detail whether they are also suitable for use in the railway sector (see

subsection 3.2.5). It is also possible to adapt or expand existing approaches or just adopt

concepts from them.

The characterizations and architectures just mentioned (section 3.1), which differ (partially)

from the railway domain, need to be considered when the approaches for evolvability found

in the literature (see section 3.2) will be analyzed whether they are also suitable for use in

the railway sector (see subsection 3.2.5).

3.2 SOLUTION APPROACHES FOR EVOLVABILITY FROM OTHER DOMAINS

In this section, the working group summarizes and structures the results of a literature

research on evolvable software architectures. The focus is on the domains automotive,

avionics and industrial automation. However, literature from other domains (e.g., enterprise

IT) as well as domain-unspecific literature were also considered. For a better overview, the

listings of the solution approaches are split into architectural patterns, techniques and

methodologies (see subsection 3.2.1), concepts and principles (see subsection 3.2.2),

concrete solutions and approaches (see subsection 3.2.3), and metrics (see subsection

3.2.4).

The various solution approaches found in the literature have been consolidated. For this

purpose, the essential components (e.g., architectural patterns or concepts) of each solution

were extracted and classified under appropriate generic terms in the listings. These generic

terms are given in the first column “Approach” of each listing. The second column “NFP”

(non-functional property) lists all non-functional properties from deliverable D29.1 [1] that

are either explicitly mentioned by at least one concrete solution in the literature or classified

by the working group as a property addressed by the respective approach. Properties that

are not primarily addressed by the basic approach, but for which the approach can make a

supportive contribution (e.g., only under certain conditions), are given in brackets. The third

column, “User Story”, lists the user story IDs from deliverable D29.1 [1] that are addressed

by the approach in the same way as described for the NFPs. Both the NRPs and the user

story IDs are listed in the (rough) order in which the working group assesses the impact of

the respective approach on the stated NRP or user story. The fourth column, “Reference”,

lists the literature that discusses the respective approach in some way or uses it in one's

own solution approach. In the "Detail" column of each listing, further individual information

is provided.

3.2.1 Architectural patterns, techniques and methodologies

In Table 4, various architectural patterns, techniques and methodologies for evolvable

software architectures found in the literature have been consolidated into a listing, using the

columns as described in section 3.2.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 24 of 50 2023-12-19

Approach NFP
User
Story

Reference Detail

Service-Oriented
Architecture
(SOA)

changeability
maintainability
compatibility
extensibility
(portability)
(testability)

10006
10004
10005
(10012)
(10007)
(10013)

[62] [38]
[60] [40]
[63] [56]
[3] [39]

Fine-grained (distributed) entities
(“services”) are combined to an application.
Promotes reuse of functionality and
engineering efficiency (smaller entities are
easier to develop, adapt and maintain).
Supports dynamicity at runtime (e.g.,
dynamic discovery of services or network
communication established dynamically at
runtime).

Microservices

extensibility
maintainability
changeability
compatibility
portability
(testability)
(traceability)

10006
10005
10007
10004
10015
(10012)
(10007)
(10013)
(10009)
(10008)

[3] [60]
[64]

Compared to services in SOA, microservices
are even more fine-grained and especially
more independent (very few or no
dependencies to other microservices =
loose coupling) and self-contained (with
own, decentral data storage). Each
microservice can use different technologies
(technology-independent implementation)
and communicate across different
platforms. Due to the strong independence,
the potential reuse is reduced, but e.g.,
updates are easier (incl. security patches).

Virtualization

portability
(maintainability)
(safety)
(security)

10001
10015
(10016)
(10006)
(10012)

[51] [54]
[59] [65]

Allows to exchange HW platforms without
affecting functional system behavior. Might
help to increase non-functional properties
like performance during lifetime or scaling
capabilities. Might support for safety and
security due to isolation, partitioning, or
separation (e.g., allowing mixed critically).

Containers

portability
testability
extensibility
changeability
maintainability
(configurability)
(safety)
(security)

10001
10009
10006
10012
10004
10015
10007
10005
(10010)

[39] [59]
[60] [64]
[66]

A (lightweight) form of virtualization. Self-
contained, highly portable, isolated units of
software. Provide a good basis for DevOps
and engineering efficiency. Promote easy
deployment, update, and exchange of SW
modules. Implementations of Open
Container Initiative (OCI) standard are e.g.,
Docker or Podman.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 25 of 50 2023-12-19

Approach NFP
User
Story

Reference Detail

Model-Driven
Development
(MDD) /
Software
Development
(MDSD) /
Architecture
(MDA) /
Engineering
(MDE)

traceability
maintainability
(verifiability)
(changeability)
(maintainability)
(adaptability)
(portability)
(safety)

10011
10002
10004
(10000)
(10003)
(10006)
(10005)

[38] [67]
[46] [3]
[45] [68]
[5]

Systematic use of models throughout the
software engineering life cycle. MDD helps
to reduce complexity, supports reuse, and
might also support (formal) verification or
defining and evaluating Quality-of-Service
(QoS) attributes. Code generation based on
model-driven approaches allows to trace
the actual relationships (e.g., between the
architecture, documentation, and code)

Enterprise
Modeling

traceability
(10011)
(10002)

[3]

Similar to model-driven approaches, but on
a more abstract, higher level. Allows to
check changes and impact on a higher level
(e.g., processes, …),

Product Line
Engineering (PLE)

adaptability
configurability
maintainability
traceability
(verifiability)
(changeability)

10000
10003
(10004)

[69] [54]
[5]

Helps to manage SW over multiple projects
based on a (proven) reference base and
supports to handle new (tailored) projects
and variability.

Component-
Based Software
Engineering
(CBSE)

(maintainability)
(adaptability)
(changeability)
(extensibility)
(traceability)

(10006)
(10005)
(10000)

[46] [70]
Basic paradigm based on software entities
to support reusability. One concrete form of
this concept is, for example, SOA.

Normalized
Systems Theory

changeability
maintainability
extensibility

10005
10006
(10015)
(10004)

[3]

Method of software engineering aiming
fine-grained modularity (based on
separation of concerns). Small modules
(e.g., from automated code generation)
support reducing complexity and allow to
accommodate change.

Axiomatic Design

verifiability
traceability
(maintainability)
(changeability)

10018
(10009)
(10011)
(10016)
(10015)

[55]

Method for structured design based on the
assignment of requirements to solutions
(with the help of matrices). Aims at
reducing complexity, like principle “parts
reduction principle”, trying to share closely
related functions (e.g., in modules) and use
duplicate parts as far as possible.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 26 of 50 2023-12-19

Approach NFP
User
Story

Reference Detail

Quality-Driven
Software
Architecture
(QDSA)

(maintainability)
(adaptability)
(extensibility)

(10003) [71]
Method for software architects to ensure
quality attributes in software architectures
using a “quality tree” with scenarios.

Health
Monitoring

diagnosability
(maintainability)

10017 [72]

Components (on different architectural
levels) provide built-in diagnostic functions.
These are invoked by a “health monitoring”
application that performs analyses (or also
e.g., fault logging, troubleshooting or other
maintenance tasks).

Distributed
Processing

maintainability
(changeability)
(extensibility)
(testability)

(10015)
(10006)
(10005)
(10012)
(10008)
(10009)

[54]

Components of a system are computed on
different entities (of various types and
forms). One concrete form of this concept
is, for example, SOA.

Feature
Orientation

adaptability
configurability
maintainability
traceability
(changeability)
(extensibility)
(verifiability)

10003
10004
10014
10000
10011
(10002)

[69] [2]

Supports to handle new tailored projects
and variability. Available in various forms
and forms (e.g., feature activation or
deactivation at runtime).

Cloud Computing

changeability
extensibility
maintainability
portability
(adaptability)
(testability)

10005
10013
10007
10012
(10014)
(10006)
(10017)

[41]

Partial outsourcing of software calculations
(e.g., non-safety-critical or non-latency-
critical) to the cloud and sending the results
to the train in the form of commands or
information (e.g. travel recommendations).

Mockups (testability) (10003) [3]

Can increase engineering efficiency. Also,
can support to validate the customer's
requirements (early feedback), but not to
verify that the later SW system fulfils them.

Low Code /
No Code

portability
maintainability
adaptability
changeability
(traceability)

10001
10003
10004
(10008)
(10005)

[3]

Can increase engineering efficiency (shorter
time-to-market by support to develop new
SW faster and reduce maintenance cost).
Can reduce complexity (using prebuilt
components). Can support technical

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 27 of 50 2023-12-19

Table 4. Architectural patterns, techniques and methodologies.

As one can see in Table 4, there is no single architectural pattern, technique or methodology

that fulfills all or at least most of the NFPs at the same time. The same applies to the

addressed user stories. For an overall architecture that covers as many as possible or all of

Approach NFP
User
Story

Reference Detail

variability e.g., change of technologies
(regenerate applications for other target
platforms based on code generation and
mode-driven approach).

Scripting
Language

extensibility
maintainability
(compatibility)
(portability)

10004
(10005)
(10008)

[70]

Supplementally use scripting languages
(e.g., for non-safety-related parts) to
improve support for application
development (as they tend to be flexible
and must not be recompiled).

Mobile agents
portability
changeability

10001
10005
10006

[60]

Allow to move computation incl. code, data,
and state to servers (e.g., from one host to
another). Also aimed for client
customization (e.g., adding new features).

Multi-Agent
Systems (MAS)

configurability
changeability
adaptability
(extensibility)

10014
10003

[56] [73]
[58] [74]

A decentralized group of autonomous,
distributed agents that collectively solve a
common problem using high-level
(semantic) communication and interaction.
New features and adaptions are easy
possible but is likely to have (unpredictable)
impact on the existing components/system.

Architecture
Description
Language (ADL)

maintainability
changeability
verifiability
(extensibility)
(portability)
(safety)

10009
10005
(10002)
(10009)
(10001)
(10011)

[75] [68]

Combining formal methods with concepts
of components and connectors, applying
principles like abstraction, correspondence,
and type completeness, and allowing
executable specifications (e.g., ArchWare or
LEDA).

Domain-Specific
(Modeling)
Language
(DSL/DSML)

(verifiability)
(maintainability)
(changeability)
(adaptability)
(portability)

(10011)
(10002)
(10003)
(10009)
(10000)
(10004)

[46]

The achievable NFPs depend heavily on the
specific domain, language, and concrete
realization. But DSL-based validators and
generators (based on automated model
transformations) could reduce complexity
via abstraction and automation [46].

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 28 of 50 2023-12-19

the targeted NFPs and user stories, an appropriate combination must be found. However, it

may be the case that some approaches counteract each other and cannot be combined.

3.2.2 Concepts and principles

The columns used as described in section 3.2 and as already done in subsection 3.2.1 for

architectural patterns, techniques and methodologies (in Table 4), Table 5 now lists

concepts or principles that support software architectures evolvability found in the literature

from the different domains. Again, the mentioned NFPs and user story IDs are not always

complete in the sense that not every property that is supported in any form by the approach

is listed, but rather those that the working group considers to be the most relevant.

Approach NFP
User
Story

Reference Detail

Abstraction

portability
maintainability
changeability
adaptability
extensibility

10001
10015
10006
10005
10003
(10000)
(10002)
(10012)

[69] [67] [46]
[49] [70] [75]

Basic principle. Concrete forms are e.g.,
abstraction from target Operating
System (OS) and hardware platforms
(e.g., Hardware Abstraction Layer
(HAL)), Application Programming
Interfaces (APIs) or communication.

Separation Of
Concerns

maintainability
changeability
extensibility
(portability)

10012
10006
10005
(10015)
(10003)
(10002)

[3] [63] [46]
[75] [76]

Every concern (e.g., drivers of change,
technology, or data access) should be
separated from other concerns. This is
one principle of Normalized Systems
and supported by e.g., MDD, CBSE or
SOA.

Modularity

maintainability
testability
changeability
extensibility
(verifiability)
(traceability)

10012
10002
10006
10005
10009
(10007)
(10015)

[37] [69] [77]
[72] [52] [78]
[70] [2] [79]

Breaking down a problem into smaller,
more manageable modules. Improves
maintainability and supports changes
without affecting other modules.

Layered
Architecture

portability
compatibility
maintainability
changeability

10015
10001
10005
(10008)
(10002)

[63] [48] [57]
[62] [69] [38]
[37] [46] [80]
[75] [54] [44]

Multiple horizontal layers (HW and SW)
each with a defined responsibility
(specific function/role) thus promoting
separation of concerns. Reduces the
impact/effects of system changes on
other layers (incl. applications).

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 29 of 50 2023-12-19

Approach NFP
User
Story

Reference Detail

Decentralization

changeability
extensibility
(testability)
(maintainability)

10006
10005
10015
(10002)

[70] [79]

Distribute resources and computation
to different (logical or physical)
locations (e.g., using Microservices).
Can reduce change propagation.

Information
Hiding

maintainability
testability
changeability
traceability
(extensibility)
(portability)

10002
10006
10005
10015
(10001)

[69] [46] [67]
[77]

Hide details of e.g., deployment, bus
and network topology or underlying
technologies (e.g., encapsulate
infrastructure technology choices and
provide interfaces for application
software). Reduces the impact of
system changes on other system parts.

Isolation

safety
security
extensibility
(changeability)
(verifiability)
(testability)
(portability)

10012
10006
10005
10002
(10015)

[46] [51] [54]
[72] [70] [81]
[82] [59] [65]

General concept with different types
(e.g., temporal or spatial) and various
variants, e.g., isolation of (system)
services, functions, tasks, modules
(e.g., trusted/untrusted), resources, or
test isolation. Techniques include
virtualization (e.g., hardware-assisted
Trusted Execution Environments like
ARM TrustZone or Intel SGX),
programming languages (e.g., Modula
or SPIN OS), or containers. Can support
certification and homologation (e.g.,
regarding safety and security), secure
user space, or prevent fault
propagation (e.g., compromising other
functionality).

Partitioning /
Separation /
Segmentation

[see “Isolation”] “ “

[37] [38] [39]
[63] [51] [54]
[72] [49] [83]
[42]

A kind of isolation. Partitioning of e.g.,
resource usage (like memory space,
computation time, access, or
backplane). Common form is “time and
space partitioning” (e.g., by RTOS or
hypervisor-based). Allows mixed-
criticality tasks/services (e.g., safety
and non-safety-critical) running on the
same hardware (e.g., as standalone
Virtual Machine (VM) or within an OS
partition). Can facilitate security (e.g.,
by restricting data flow between
partitions).

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 30 of 50 2023-12-19

Approach NFP
User
Story

Reference Detail

Commonality
compatibility
(maintainability)
(changeability)

10018
(10016)
(10008)
(10000)

[55] [73] [54]
[72] [80]

Cluster components (HW and SW)
based on similarity (e.g., via domain
analysis) and share functionality among
these (e.g., processes, technologies,
interfaces, or infrastructure). Promotes
design reuse and reduces component
count (incl. spares). Supported by using
(system) features, platforms, product
families or (software) product lines.

Redundancy
safety
(changeability)
(portability)

(10015)
(10006)
(10016)

[39] [62] [63]
[84] [51] [54]
[70] [79] [73]

Can include both HW (e.g., lockstep
processor) and SW (e.g., master/slave
protocol). Different types, e.g.,
dislocality (SW units deployed on two
distinct HW components) or
dissimilarity (SW units deployed on HW
of different type, different suppliers or
using different processors, cores, etc.).
Supports safety or availability (e.g.,
allows failure or removal of module
without losing a system function).

Loose Coupling
High Cohesion

maintainability
testability
changeability
(extensibility)
(portability)

10015
10006
10005
(10002)
(10012)

[69] [40] [60]
[39] [64] [2]
[63] [70] [85]

Can be achieved by e.g., encapsulation,
service grouping (SOA), decoupling of
components and inter-process
communications (e.g., from specific
data transfer mechanisms) or using
standardized interface pattern. System
changes affect fewer modules and
module changes affect fewer other
modules.

Publish-
Subscribe

maintainability
portability

10003
(10012)
(10001)
(10008)

[39] [38] [80]
[81] [83]

Enables location-independent and
protocol-transparent communication.
Decouples communication and
application logic (loose coupling). Data
consumer and producer does not know
each other and can find each other
dynamically (at runtime). Typically used
in event-based systems (register for
notification on data changes or other
specific conditions). An example of a
real-time middleware is DDS.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 31 of 50 2023-12-19

Approach NFP
User
Story

Reference Detail

Design by
Contract

verifiability
testability
(traceability)

10009
10002
10006
(10011)
(10012)
(10005)
(10015)

[67]

A form of “assume/guarantee” (A/G)
technique. Definition of interface
assertions (e.g., mode-based contracts)
and contract compatibility analyses.
Might support (re-)homologation,
(regression-)testing and impact analysis
of changes.

Meta Modeling

traceability
verifiability
(changeability)
(maintainability)

10009
10011
(10005)
(10006)
(10002)

[5] [46]

Document e.g., architectural design
decisions and trace them to related
requirements and implementation. Or
use versioned components and meta
model to identify compatibility-
breaking updates (based on data types
and timing) for example.

Interface
Handling

compatibility
maintainability
(testability)

10008
10015
(10006)
(10004)

[38] [40] [62]
[44] [67] [46]
[77] [54] [72]
[70] [64] [79]

Prefer common interfaces for better
integrability. Aim for backward-
compatible interfaces. Interface
assertions (cf. “Design by Contract”)
support verification of interface
compatibility. Define system interfaces
between subsystems. Restrict access
and visibility of interfaces (e.g., of
services).

Namespaces
(testability)
(traceability)
(changeability)

10006
10005
(10002)
(10009)
(10011)

[46] [39] [59]

Isolate (incl. resource usage) and limit
the visibility of e.g., processes, network
interfaces, mount points, workspaces,
microservices or containers.

Zones

compatibility
maintainability
changeability
extensibility

10012
10015
10008
10013
(10007)
(10006)
(10005)
(10002)

[37] [70]

Divide architecture (HW or SW) into
zones to separate e.g., legacy software
(for compatibility reasons), data (locally
distributed), or “make” parts done by
manufacturer from “buy” parts from
suppliers or third-party components.

Self-
Reconfiguration

configurability
adaptability
changeability

10014
10003

[46] [79]

Capability of an entity (e.g., system,
device, or application) to change
autonomously its configuration (e.g., to
build ad-hoc ensembles for
collaboration). This might be supported

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 32 of 50 2023-12-19

Approach NFP
User
Story

Reference Detail

by multi-agent systems (MAS) and is
incorporated by e.g., the Evolvable
Production System (EPS) paradigm.

Commercial Off-
The-Shelf (COTS)

compatibility
maintainability
portability

10008
10015
10001
10018
(10016)

[83] [72] [51]
[50]

Using COTS components (e.g., Ethernet
Local Area Network (LAN) HW like IP
routers, or general-purpose
processors) supports to develop a
system cost-effectively, to keep it
modern (e.g., due to market forces,
third-party participation, and
successive compatible generations of a
product line) and handle obsolescence.

Open System
Principle

compatibility
maintainability
portability

10008
10015
10001
10018
(10016)

[72] [78] [54]
[78]

This system design principle is
supported by e.g., a modular design,
technology-independence, and the use
of published, widely supported and
controlled or consensus-based
standards (especially for interfaces). It
enables the use of commercial
technology and products (COTS) and
aims for interoperability and
replacement or upgraded of HW or SW
with alternate components. Open
System Architectures (OSA) are e.g.,
AUTOSAR (for automotive) or Modular
Open System Approach (MOSA) (for
avionics).

Location
Transparency

portability
(changeability)
(extensibility)

10001
(10003)

[54]

Entities (e.g., applications) don’t know
where other entities reside and thus
are not affected when entities migrate
to other HW. Therefore, objects or
resources should be identified and
accessed without knowledge about
their location (e.g., using logical names
and registries).

Table 5. Concepts and principles.

Just like with the approaches in subsection 3.2.1, to cover as many of the different NFPs

and user stories as possible, suitable concepts and principles must also be selected and

combined into an overall architecture.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 33 of 50 2023-12-19

3.2.3 Concrete solutions and approaches

This subsection names and shortly describes selected, concrete solutions and approaches

from other domains. The architectural patterns, techniques and methodologies described in

3.2.1 as well as the concepts and principles described in 3.2.2 were, among others,

extracted from these concrete solutions. For clarity, the listings are split into the domains

avionics (see Table 6), automotive (see Table 7), industrial automation (see Table 8) and

others (see Table 9).

First, Table 6 lists concrete solutions and approaches from the avionics domain. Safety,

security as well as standardization (including use of COTS components) play a particularly

important role in these.

Approach Reference Detail

Integrated
Modular
Avionics (IMA)

[48] [49]
[50] [46]

Architecture supporting COTS. Truth-based scheme where each entity
recognizes an internal failure and removes itself from the system. Uses lock-
step processor, serial bus and time and space partitioning via ARINC 653
RTOS. Allows real-time, safety-critical, and certifiable applications.

Multiple
Independent
Levels of
Security and
Safety (MILS)

[39] [51]

Joint research effort to develop a high-assurance, real-time architecture for
embedded systems. Supports non-bypassable, evaluable, available, and
tamper resistant security at the RTOS level. Technical foundation is a
separation kernel.

Common
Avionics
Architecture
System (CAAS)

[54]

Open system architecture (incl. HW and SW) used for a helicopter product
line based on e.g., variability isolation, connectivity, modularity, layering,
partitioning, and redundancy with the vision for a scalable system, reducing
cost, and addressing obsolescence and modernization issues.

Modular Open
Systems
Approach
(MOSA)

[51] [78]

Driven by the need for COTS, it describes the reference for HW and SW
standards (incl. network, middleware, third-party applications, security
protocols, storage, or OS). Using Advanced Full DupleX (AFDX) or Time-
Triggered Ethernet (TTE) it can even integrate safety critical and non-critical
controls/systems onto the same network with mixed levels of redundant
operation.

Microkernel
Hypervisor
RTOS VM

[51]

[51] describes a feasibility assessment for the “Microkernel Hypervisor
RTOS Virtual Machine (VM) architecture” to “enable virtualization for a
representative set of avionics applications requiring multiple guest OS
environments”. These include legacy applications (on a legacy RTOS guest
OS), safety-critical applications (on an ARINC 653 OS), and MILS applications
(on a high assurance OS) for example. All executing on different VMs on a
“Microkernel Hypervisor RTOS within a Multicore (X86 or Power PC) with

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 34 of 50 2023-12-19

Approach Reference Detail

hardware-based virtualization support”. The paper addresses design issues,
limitations/restrictions, and the feasibility of applying this approach.

XtratuM [49]

[51] describes an approach for an embedded architecture using the bare-
metal hypervisor “XtratuM” designed for safety-critical applications to
extend the “trusted environment” from the HW level to the hypervisor. It is
based on time and space partitioning (TSP) as defined in ARINC 653 and
MILS, and includes an interrupt model, health monitoring, fault
management. Executable entities (partitions) are executed on top of a VM.

Table 6. Concrete solutions and approaches from avionics domain.

In the following, Table 7 lists some concrete solutions and approaches from the automotive

domain. Safety, security, and open standards also play an important role in these.

Approach Reference Detail

AUTOSAR
Classic
Platform (CP)

[43] [44]
[45] [46]

This current software platform, which is ubiquitous in the automotive
domain, was already described in subsection 3.1.1.

AUTOSAR
Adaptive
Platform (AP)

[43] [47]
[37] [39]
[38]

This next generation architecture for the automotive domain has also
been described in subsection 3.1.1 already.

AutoFOCUS [38]

Research prototype for model-driven development supporting formal
verification capabilities. At a certain degree of required integrity, such
formal techniques are highly recommended by the automotive functional
safety standard ISO 26262. But contrary to evolutionary goals, according
to [84] hard-coded optimization rules (such as AutoFOCUS) “restrict the
engineers’ flexibility”.

Robust and
Reliant
Automotive
Computing
Environment
(RACE)

[44] [41]
[39] [44]

This project proposes a “single, scalable computing platform as a central
vehicle controller” (centralized architecture) inspired by ARINC 653 with
redundancy and fail-safe operation. The project also developed the open
source publish-subscribe middleware “CHROMOSOME” that uses
concepts from DDS (but only supports a subset of its QoS policies). RACE
provides “a safety-critical execution environment with interfaces for
verifying and testing the components” and is capable of “Plug & Play”
what fits to the “concept of highly sensorised cars”. Depending on the
installed sensors and SW, a software component can change its behavior.

Table 7. Concrete solutions and approaches from automotive domain.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 35 of 50 2023-12-19

Table 8 lists selected solutions and approaches from the industrial automation domain. A

prominent characteristic of these approaches is their high degree of flexibility and

adaptability. In some cases, even at runtime, which is a very strong form of evolvability.

Approach Reference Detail

Flexible (FMS) /
Reconfigurable
(RMS) /
Holonic (HMS)
Manufacturing
Systems

[74] [58]

FMS were a first step towards adaptive manufacturing systems through
“flexibility at the machine and routing levels”. The later RMS promotes
“modular and scalable manufacturing stations to achieve a faster
response to change of markets and customers”. HMS are based on a
concept of autonomous and co-operative building blocks, later expanded
to “intelligent agents”.

Evolvable
Assembly
Systems (EAS)

[74]

The EAS project [74] builds upon and extends the “PRIME” project, a
multi-agent architecture for plug and produce based on standard
technology proposed in [86]. The philosophy of EAS is a “four-phase cycle”
consisting of the phases (re-)configuration, operation, monitor, and
definition or adaptation (external or internal). EAS proposes a distributed
software architecture “based on the principles of decentralization,
context-awareness and intelligent resources, that is implemented using
intelligent agent technology and a data distribution service”.

RAMI 4.0 [87]

“RAMI” is a reference architecture model as an orientation aid for
Industry 4.0. It is a three-dimensional consolidation of the most important
aspects of Industry 4.0 and is intended to ensure that all participants have
a common perspective and build a common understanding. To this end, it
relies on international cooperation and strives for global interoperability.

Cyber-Physical
Systems (CPS)

[57] [46]
[66]

In manufacturing (Industry 4.0), these include intelligently networked field
devices, machines, production modules and products that autonomously
exchange information, trigger actions, and control each other
independently. Such systems are characterized by a high number of
software-controlled functions, sensors, and actuators. They focus on
information and flexibilize the integration of different layers within the
architecture.

Cyber-Physical
Production
Systems (CPPS)

[57] [46]
[59]

More recent approaches focus on Cyber-Physical Production Systems
(CPPS), which are special, more autonomous CPS that make use of AI
technologies to reduce human supervision and where virtualization of
applications is becoming more present to provide higher flexibility.

Evolvable
Production
Systems (EPS)

[56] [58]

According to [58], EPS was “one of the most promising emerging
paradigms aimed at revolutionizing the manufacturing industry by
incorporating adaptability, self-reconfiguration and intelligence at the
shop-floor level” in 2015. The approach is process-oriented, based on

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 36 of 50 2023-12-19

Approach Reference Detail

“skills” and enables runtime modifications. It allows for modular, self-
managing systems based on intelligent, agent-based distributed control
and provides “Plug & Produce” at the level of sensors and actuators.

Table 8. Concrete solutions and approaches from industrial automation domain.

Finally, Table 9 lists selected, concrete solutions and approaches from other domains (e.g.,

enterprise IT) as well as from domain-unspecific literature (e.g., “embedded systems” in

general). Even if these address non-safety-related areas, they can potentially also be

applied or transferred to other areas, such as the railway domain.

Approach Reference Detail

Recovering
Architectural
Assumptions
Method (RAAM)

[5]

Method “that makes assumptions explicit by recapitulating historical
information of software system evolution”, where assumptions are
modeled invariability (design decisions that are assumed not to change).
These can then help to assess the evolutionary capabilities of a system
architecture or to provide what-if scenarios (what if an assumption proves
to be invalid).

System
Architecture
Optimization
Language (SAOL)

[84]

Specification language for both objectives (optimization goals) and
constraints. Optionally extended by compatibility relations and concepts
of dislocality and dissimilarity for redundancy. Can be used to decide on
which execution unit to deploy which software application for example.

Architecture-
Level
Modifiability
Analysis (ALMA)

[88] [89]
[5] [70]

Method for quantitative architecture analysis that “analyzes modifiability
based on scenarios that capture future events a system needs to adapt to
in its lifecycle” [5]. Can be used for maintenance prediction (required
effort for system modifications due to future changes), architecture
comparison of multiple candidates, or for risk assessment for example.

Architecture
Evolvability
Analysis (AREA)

[90] [91]
[70]

Method for systematic assessment with the goal to “provide quality
attribute subcharacteristics values”, “identify the weak parts of the
system architecture related to evolvability”, and “analyze the quality
attribute subcharacteristics of the possible evolutions” of a system [70].
Can support to make architecture requirements and corresponding design
decisions more explicit and documented. It includes a technical review
that can be applied at different points during system life cycle (e.g., at
design phase or for evaluating a legacy system that is changed).

ArchWare
Architecture
Analysis
Language (AAL)

[68] [75]

AAL is a “formal property expression language designed to support
automated verification" (e.g., using model-checking or theorem proving)
and provides a framework that allows architects to specify and verify
relevant properties of software architectures and styles.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 37 of 50 2023-12-19

Approach Reference Detail

Portability Layer [77]
Use of a “portability layer” that encapsulates infrastructure technology
choices and provides interfaces for application SW. This leads to openness
for e.g., different OS vendors (like VxWorks).

Java Agent
Development
Environment
(JADE)

[58] [74]
Platform for implementing an agent-based control architecture (cf.
“Multi-Agent Systems (MAS)” in Table 4).

Open Service
Gateway
initiative (OSGi)
Service Platform

[62] [82]
A “runtime framework that supports visibility constraints between OSGi
bundles” which are “a Java archive or a Web application archive file” [62].
The visibility is declared using a manifest file.

Proteus [85]

A “framework which is intended to support the development of adaptable
software architectures using design patterns” illustrated by way of a home
appliance control system. It presents ”how to analyze and use design
patterns as potential adaptability enhancers in developing software
systems”.

Lightweight
Sanity Check for
Implemented
Architectures
(LiSCIA)

[76]

Evaluation method “that can reveal potential problems as a software
system evolves” and “helps to determine which quality criteria the system
meets module”. Is covers the five categories “source group”, “module
functionality”, “module size”, “module dependencies” and “technologies.

Design and
Engineering
Methodology for
Organizations
(DEMO)

[3]

Enterprise modeling technique (cf. “Enterprise Modeling” in Table 4) that
focuses on creating an “ontological model” of an enterprise that “defines
the products and services that the enterprise delivers through actors,
including the underlying processes, information and business rules,
independent of its technological implementation”. Used in [3] as starting
point for a MDSD approach incl. automated and traceable transformation
of DEMO models into working software.

Table 9. Concrete solutions and approaches from other domains.

3.2.4 Metrics

Architectural metrics are a means of analyzing and evaluating the quality of an architecture.

Metrics allow to make quality attributes or non-functional properties (NFPs) measurable or

assessable. This can be used, for example, to justify architecture design decisions or to

evaluate them retrospectively. But metrics can also be used to determine specific properties

of a system at runtime. Such could be used, for example, in combination with the DevOps

approach, which relies on continuous feedback. Therefore, not only architectural metrics are

listed in Table 10, but various others as well.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 38 of 50 2023-12-19

Approach Reference Detail

Interface complexity [79]

Expresses “the relative difficulty of a given change to an
interface, measured in percentage of original design effort, as a
function of the percent change needed”. Relies on interviews
to develop the relationships. Can be used to “decide where
modular boundaries (and therefore interfaces) should be
defined in a given system.”

Dependency complexity [2]

When “a component is changed, its change has effects on
other components through dependencies. The complexity of
dependencies is the determining factor of maintaining
architectures”.

Design complexity [69] Proposes metrics “to measure complexity of the design”.

Cyclomatic complexity [64]
A metric that is “aggregated from measurements of individual
methods” [92].

Cognitive complexity

Architectural complexity

Technical complexity

[64]
Mentions “metrics for cyclomatic complexity, cognitive
complexity, architectural / technical complexity”.

Functional cohesion [63] Mentions metrics “like functional cohesion”.

Evolution ratio [5] “Amount of evolution in terms of software size”.

Evolution speed [5]
“Indicator of an organization’s capability for software system’s
evolution”.

Implementation change logs

Software life span

Software size

[5] [91]
Mentions metrics that “base on implementation change logs”
or “on software life span and software size”.

Module number [91]
Refers to “computation of metrics using the number of
modules in a software system”.

Maintainability

Binary Size

[69] Refers to an approach uses metrics to measure the non-
functional properties “maintainability”, “binary size” and

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 39 of 50 2023-12-19

Approach Reference Detail

Performance

“performance” in software product lines”, which are “used to
compute optimized software product line (SPL) configurations
according to user-defined non-functional requirements”.

Code metrics [64]

Measure attributes like lines of code (LOC), test coverage,
cyclomatic complexity, clone coverage, defect resolution time,
CI/CD pipeline duration, or count of defects per service, failed
tests, code smells, endangered requirements, outdated
dependencies or rule violations.

IOSA [5]
Impact of each “scenario profile” is measured through “impact
on the software architecture” (IOSA).

ADSA [5]
Impact of each “scenario profile” is measured through
“adaptability degree of software architecture” (ADSA).

Visibility matrix [79]

A matrix where element’s row is the “visibility fan out” (VFO),
the number of dependencies it has on other elements, and
element’s column is the "visibility fan in” (VFI), the number of
elements that depend on it.

Costs associated [79]

Proposes to add a cost function to represent and measure cost
and time of a given change in a parameter (not interface).
Defining a cost threshold, these metrics “could then be used to
explore the tradespace to see what subset is reachable with
the given resources”.

Process-oriented [5] [91]
Analyzes “the degree of software architecture adaptability
through intuitive decomposition of goals and intuitive scoring
of goal-satisfying level of software architecture” [5].

Downtime [59]
Refers to authors that state that downtime is a relevant metric
“since it used in service level agreements (SLA)”.

Isolation [65]
Defining “measures of spatial and temporal isolation that could
point out isolation issues”, e.g., a “developer could use the
existing performance isolation metrics”.

Product line maintainability [69]
Refers to a metric with which product lines are measured using
the metric “maintainability index”.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 40 of 50 2023-12-19

Approach Reference Detail

Service maintainability [64]
Mentions “service-oriented maintainability metrics” and its
applicability for microservices.

Service complexity [40]
Refers to “a metric to measure the complexity of composite
services” defined by Liu and Traore.

Service grouping [40] [62]
Proposes a “set of metrics for evaluation of architectural
design candidates in distributed safety-critical SOA” [40].

Coupling and cohesion
(for service groups in SOA)

[40]
Proposes “a set of metrics to measure the coupling and
cohesion quality attributes of derived service groups of
architectural designs for a distributed SOA”.

Latency

Container performance

[59]

Refers to an approach that “tried to address” the gap to
“measure the different types of latency” by “studying
operating system-level metrics, as well as metrics to
specifically evaluate the timeliness of tasks running in the
system, and adapted those to assess the RT performance of
containers”.

Table 10. Metric approaches from other domains.

Further, a more in-depth discussion and overview of approaches for quality evaluation at

software architecture level including metric-based, but also experience-based and scenario-

based, approaches can be found in [5].

According to [79] “no perfect evolvability measure currently exists”. As reasons why metrics

fall short, it is mentioned that some “measure a different ility (such as adaptability or

complexity)”, some are “time intensive and are potentially unreliable (such as relying on

interviews)” and others “require very highly developed models before they can be applied”.

Nevertheless, metrics, as described at the beginning of this subsection, can make an

important contribution to improve the quality of software architectures and thus also promote

the evolvability of them.

3.2.5 Applicability of approaches within railway domain

This subsection outlines the applicability of the approaches consolidated in subsections

3.2.1 to 3.2.4. It is limited to fundamental considerations, such as addressing specific issues

and possible difficulties. A more in-depth analysis and evaluation of the applicability of

specific approaches will be part of the next deliverable (D29.3).

Basically, the concepts and principles consolidated in subsection 3.2.2 (see Table 5) are

more likely to be applicable in the railway domain because of their higher abstraction than

the concrete, partly domain-specific solutions shown in subsection 3.2.3. Nevertheless, also

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 41 of 50 2023-12-19

the applicability of the former, as with all approaches collected in this deliverable, must be

evaluated individually.

However, the fact that an approach can be implemented within the railway domain does not

mean that it can be applied sensibly. For example, “cloud computing” or “mockups” will

undoubtedly be technically feasible, but whether there are also use cases within the railway

domain where these approaches can be used sensibly still needs to be considered. From

CPPS (see Table 8) one can possibly learn aspects regarding flexibility, but on the one hand

it is questionable whether this form and degree of flexibility is necessary within a train, and

on the other hand this approach from industrial automation as a whole obviously does not

fit the conditions within the railway domain. Interesting approaches, which the working group

could not clearly classify into “certainly applicable” or “certainly not applicable” right away,

are e.g., SOA or microservices. These have promising aspects, but whether the respective

holistic architectural pattern also fits the conditions and structures of a train control system,

for example, still needs to be examined in more detail.

Further, solution approaches cannot always be combined with each other without

restrictions. It is possible that approaches counteract or even exclude each other. A simple

example is the decision for a centralized or decentralized architecture. Even if these can

possibly be combined within an overall system, but at a specific level, only one of the two

concepts can be applied. In addition, the objectives (e.g., specific NFPs) of individual

approaches can also contradict each other. For example, “self-reconfiguration” (which e.g.,

enables strong flexibility and promotes engineering efficiency) on the one hand, and the

“design by contract” technique (which can e.g., support homologation) on the other. While a

safety-critical control function of a train based on self-reconfiguration is rather not eligible

regarding homologation, the design by contract approach would rather not be applicable to

all system components of a train with a justifiable effort and counteracts engineering

efficiency. In such cases, it must then be evaluated individually which combination of

appropriate approaches represents the more suitable software architecture overall.

In addition, the context will have to be considered during the evaluation and classification

even within the railway domain, e.g., which (sub-)system is involved and what requirements

are placed on it. One example is IT and OT parts, which may both be present within the

overall software architecture of a train. Especially when virtualization or partitioning is used

to operate (sub-)systems or applications with different requirements together (e.g., on the

same HW or within an OS partition). Such different requirements could be e.g., the NFPs

security or safety (“mixed-critically”), but also QoS attributes (e.g., latency). If, in such a

context, certain approaches are not applicable to individual units (e.g., subsystems,

applications, or partitions) due to specific requirements, they may still be applicable to other

units. This means that varying solution approaches could be applied in different parts of a

train to meet distinct requirements (e.g., NFPs) in a targeted and needs-based manner.

However, it should be noted that the more different approaches and technologies are used,

the more complex the overall system becomes, which in turn could counteract evolvability.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 42 of 50 2023-12-19

Finally, if it is not possible to make a clear classification for individual solution approaches

whether they can be applied sensibly within the railway domain or if they are classified as

not applicable, it is still possible to draw inspiration from these and, for example, to adapt

certain aspects of it.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 43 of 50 2023-12-19

4 CONCLUSIONS

In this deliverable, the problem space worked out in the previous deliverable D29.1 [1] was

addressed by examining solution approaches for DevOps and software architecture

evolvability from other domains.

The increasing importance of software and rising level of connectivity of safety-critical

products is continuously improving and adding functionality. DevOps development principles

support such kind of continuous deployment. However, safety-critical products must meet

security and safety standards. Therefore, the first step was to analyze how it is possible to

approach the DevOps concept from the perspective of cybersecurity and safety, taking as a

basis the two main standards, i.e., ISA/IEC 62443-4-1 and IEC 61508, which constitute the

legacy. After an exhaustive review of the state of the art of DevOps in industrial

environments, no relevant work has been found that approximates the paradigm in this

environment. This constituted the motivation to develop a practical approach based on the

mapping of one of the user stories defined in deliverable D29.1 [1] on the numerous DevOps

stages. For each of the stages, a set of tools was defined to enable the security properties

defined in each case.

As the variety of non-functional properties (NFPs) and user stories worked out in D29.1 [1]

has already indicated, the literature research has confirmed that software architecture

evolvability is a multifaceted quality attribute with a wide spectrum of sub characteristics.

But of the approaches found, each addresses only a subset of these characteristics or NFPs.

The focus differs depending on the domain. While a high degree of safety and reliability

plays a major role in the avionics domain, for example, recent approaches from industrial

automation often focus more on a high degree of flexibility, even at runtime. However, it has

been shown that the utilized architectural patterns, techniques, and methodologies overlap

and are often based on the same or similar concepts and principles. The working group has

extracted these from the various approaches found from the different domains, classified

them, and provides them in form of structured listings, including a mapping to the NFPs and

user stories from D29.1 [1], within this deliverable. On this basis, the working group can

evaluate which of the existing solutions and approaches from the other domains can also

be applied within the railway domain in the next step (D29.3).

The working group concludes that there is no ready-made, “off-the-shelf” solution, neither

for DevOps nor for architectural evolvability, that fits the conditions in the railway domain

and can entirely fulfill all the requirements and user stories defined in D29.1 [1]. However,

there are approaches or at least aspects of them which obviously or very likely can also be

used. The trick will be to make a suitable selection of applicable approaches which can be

combined and then to integrate them into the overall architecture and processes to build a

suitable solution that enables the desired NFPs and user stories.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 44 of 50 2023-12-19

REFERENCES

[1] Ceit and Siemens Mobility GmbH, "Flagship Project 2 - Rail to Digital automated up to autonomous train

operation, D29.1 – List of user stories and requirements," Europe's Rail Joint Undertaking, 2023.

[2] T. Wang and B. Li, "Analyzing Software Architecture Evolvability Based on Multiple Architectural

Attributes Measurements," in 2019 IEEE 19th International Conference on Software Quality, Reliability

and Security (QRS), Sofia, Bulgaria, 2019.

[3] M. R. Krouwel, "On the Design of Enterprise Ontology-Driven Software Development," Ph.D

dissertation, Maastricht University, Maastricht, 2023.

[4] D. Rowe, J. Leaney and D. Lowe, "Defining Systems Evolvability - A Taxonomy of Change," in IEEE

International Conference on the Engineering of Computer-Based Systems, 1998.

[5] H. P. Breivold, I. Crnkovic and M. Larsson, "A systematic review of software architecture evolution

research," Information and Software Technology, vol. 54, no. 1, pp. 16-40, January 2012.

[6] "DevOps Market size worth over $30 Bn by 2028," 22 03 2022. [Online]. Available:

https://www.gminsights.com/pressrelease/devops-market.

[7] C. Schmittner, J. Dobaj, G. Macher and E. Brenner, "A preliminary view on automotive cyber security

management systems," in DATE '20: Proceedings of the 23rd Conference on Design, Automation and

Test in Europe, Europe, 2020.

[8] P. Munk and M. Schweizer, "DevOps and Safety? SafeOps! Towards Ensuring Safety in Feature-Driven

Development with Frequent Releases. In Computer Safety, Reliability, and Security.," in SAFECOMP

2022 Workshops : DECSoS, DepDevOps, SASSUR, SENSEI, USDAI, and WAISE, Munich, Germany, 2022.

[9] M. Johnson, D. Cummings, B. Leinwand and C. Elsberry, "Continuous Testing and Deployment for Urban

Air Mobility," in AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA,

2020.

[10] S. Gupta, P. Lago and R. Donker, "A framework of software architecture principles for sustainability-

driven design and measurement," in In Proceedings of the 2021 IEEE 18th International Conference on

Software Architecture Companion (ICSA-C), Stuttgart, Germany, 2021.

[11] H. Yasar, "Waterfall to DevSecOps in DoD," 2019. [Online]. Available:

https://apps.dtic.mil/sti/trecms/pdf/AD1085204.pdf. [Accessed 2023].

[12] The Linux Foundation, "With Kubernetes, the U.S. Department of Defense Is Enabling DevSecOps on F-

16s and Battleships," 2020. [Online]. Available: https://www.cncf.io/case-study/dod.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 45 of 50 2023-12-19

[13] "DevOps for Railway Propulsion System Design," 2019. [Online]. Available:

https://www.aidoart.eu/aidoart/use-cases/3.

[14] J. Ayerdi, A. Garciandia, A. Arrieta, W. Afzal, E. Enoiu, A. Agirre, G. Sagardui, M. Arratibel and O. Sellin,

"Towards a Taxonomy for Eliciting Design-Operation Continuum Requirements of Cyber-Physical

Systems," in 2020 IEEE 28th International Requirements Engineering Conference (RE), Zurich,

Switzerland, 2020.

[15] D. Butler, "Comparing the IEC 62443 Software Engineering Process to IEC 61508: Where Do They

Overlap?," 2018. [Online]. Available: https://www.exida.com/blog/comparing-the-iec-62443-software-

engineering-process-to-iec-61508.

[16] S. Gautham, A. V. Jayakumar, A. Rajagopala and C. Elks, "Realization of a Model-Based DevOps Process

for Industrial Safety Critical Cyber Physical Systems," in 2021 4th IEEE International Conference on

Industrial Cyber-Physical Systems (ICPS), Victoria, BC, Canada, 2021.

[17] F. Moyon, K. Beckers, S. Klepper, P. Lachberger and B. Bruegge, "Towards continuous security

compliance in agile software development at scale," in In 2018 ieee/acm 4th international workshop on

rapid continuous software engineering (rcose), 2018.

[18] R. M. Soares, "Large Scale Agile Software Development compliant to IEC 62443-4-1 Artefact Design and

Tool support," University Institute of Lisbon, Lisbon, 2019.

[19] F. Moyón, R. Soares, M. Pinto-Albuquerque, D. Mendez and K. Beckers, "Integration of Security

Standards in DevOps Pipelines: An Industry Case Study.," in PROFES 2020: Product-Focused Software

Process Improvement, Turin, Italy, 2020.

[20] F. Moyón, D. M. Fernández, K. Beckers and S. Klepper, "How to integrate security compliance

requirements with agile software engineering at scale?," 2021.

[21] P. Bitra and C. S. Achanta, "Development and Evaluation of an Artefact Model to Support Security

Compliance for DevSecOps," https://www.diva-portal.org/smash/get/diva2:1531206/FULLTEXT02,

2021.

[22] K. Hanssen, G. T. Stålhane and T. Myklebust, "SafeScrum – Agile Development of SafetyCritical

Software," Springer, p. 2018.

[23] T. Myklebust, G. T. Stålhane and K. Hanssen, "Agile Safety Case and DevOps for the automotive

industry," in Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic

Safety Assessment and Management Conference, 2020.

[24] S. Gautham, A. V. Jayakumar, A. Rajagopala and C. Elks, "Realization of a Model-Based DevOps Process

for Industrial Safety Critical Cyber Physical Systems," in 2021 4th IEEE International Conference on

Industrial Cyber-Physical Systems (ICPS), Victoria, BC, Canada, 2021.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 46 of 50 2023-12-19

[25] Siemens AG, "Electrical components for the railway industry," Siemens AG, 2018. [Online]. Available:

https://assets.new.siemens.com/siemens/assets/api/uuid:3c66c0dc-294c-40bb-b3fd-

204777ad79ec/dfcp-b10083-00-7600-ws-railway-components-144.pdf.

[26] Atlassian, "Jira Software Cloud support," [Online]. Available: https://support.atlassian.com/jira-

software-cloud/.

[27] Microsoft, "GitHub," [Online]. Available: https://github.com/. [Accessed 2023].

[28] GitHub Action, "Codecov GitHub Action," [Online]. Available:

https://github.com/marketplace/actions/codecov. [Accessed 2023].

[29] "Building and testing Java with Maven," [Online]. Available:

https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-java-with-

maven.

[30] "Building and testing .NET," [Online]. Available: https://docs.github.com/en/actions/automating-builds-

and-tests/building-and-testing-net.

[31] "Building and testing Python," [Online]. Available: https://docs.github.com/en/actions/automating-

builds-and-tests/building-and-testing-python.

[32] GitHub Action, "Dependency Review," [Online]. Available:

https://github.com/marketplace/actions/dependency-review.

[33] Github Action, "OWASP ZAP Full Scan," [Online]. Available: https://github.com/zaproxy/action-full-scan.

[34] GitHub Action, "Anchore SBOM Action," [Online]. Available:

https://github.com/marketplace/actions/anchore-sbom-action.

[35] Siemens, "Ruggedcom Rox II v2.9," [Online]. Available:

https://cache.industry.siemens.com/dl/files/700/109481700/att_863595/v1/ROXII_v2.9_RX1500_User-

Guide_WebUI_EN.pdf.

[36] Datadog, "Datadog," [Online]. Available: https://www.datadoghq.com/.

[37] S. Kugele and M. Broy, "Architecture as a Backbone for Safe DevOps in Automotive Systems," in 2022

IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 2022.

[38] P. Obergfell, S. Kugele and E. Sax, "Model-Based Resource Analysis and Synthesis of Service-Oriented

Automotive Software Architectures," in 2019 ACM/IEEE 22nd International Conference on Model Driven

Engineering Languages and Systems (MODELS), Munich, Germany, 2019.

[39] S. Kugele, D. Hettler and J. Peter, "Data-Centric Communication and Containerization for Future

Automotive Software Architectures," in 2018 IEEE International Conference on Software Architecture

(ICSA), Seattle, WA, USA, 2018.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 47 of 50 2023-12-19

[40] V. Cebotari and S. Kugele, "Playground for Early Automotive Service Architecture Design and

Evaluation," in 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 2020.

[41] C. Prehofer, K. Schorp, S. Kugele, D. Clarke and M. Duchon, "Towards a 3-tier architecture for connected

vehicles," in 2014 International Conference on Connected Vehicles and Expo (ICCVE), Vienna, Austria,

2014, 2014.

[42] P. Obergfell, S. Kugele, C. Segler, A. Knoll and E. Sax, "Continuous Software Engineering of Innovative

Automotive Functions: An Industrial Perspective," in 2019 IEEE International Conference on Software

Architecture Companion (ICSA-C), Hamburg, Germany, 2019.

[43] "Automotive Open System Architecture," AUTOSAR, [Online]. Available: http://www.autosar.org.

[44] S. Shafaei, F. Müller, T. Salzmann, M. H. Farzaneh, S. Kugele and A. Knoll, "Context Prediction

Architectures in Next Generation of Intelligent Cars," in 2018 21st International Conference on

Intelligent Transportation Systems (ITSC), Maui, HI, USA, 2018.

[45] A. Bucaioni, A. Di Salle, L. Iovino, S. Kugele and Y. Dajsuren, "Joint Workshop on Model-Driven

Engineering for Software Architecture (MDE4SA) and International Workshop on Automotive

System/Software Architectures (WASA)," in 2023 IEEE 20th International Conference on Software

Architecture Companion (ICSA-C), L'Aquila, Italy, 2023.

[46] K. Telschig, "Evolving distributed embedded applications during operation," Ph.D dissertation,

Universität Augsburg, Augsburg, 2023.

[47] "Adaptive Platform," AUTOSAR, [Online]. Available: https://www.autosar.org/standards/adaptive-

platform.

[48] R. Black and M. Fletcher, "Next generation space avionics: a highly reliable layered system

implementation," in The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576), Salt Lake

City, UT, USA, 2004.

[49] A. Crespo, I. Ripoll and M. Masmano, "Partitioned Embedded Architecture Based on Hypervisor: The

XtratuM Approach," in Eighth European Dependable Computing Conference, Valencia, Spain, 2010.

[50] Z. S. Mor, N. Asghar and G. Inalhan, "Avionics Architecture Design for a Future Generation Fighter

Aircraft," in 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 2019.

[51] T. Gaska, B. Werner and D. Flagg, "Applying virtualization to avionics systems — The integration

challenges," in 29th Digital Avionics Systems Conference, Salt Lake City, UT, USA, 2010.

[52] W. D. Ivancic, "Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile

Communications," in 2006 Aerospace Conference, Big Sky, Montana, 2006.

[53] SAE ITC, "ARINC Standards," ARINC Industry Activities, [Online]. Available: https://aviation-ia.sae-

itc.com/product-categories/arinc-standards.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 48 of 50 2023-12-19

[54] P. Clemente and J. Bergey, "The U.S. Army's Common Avionics Architecture System (CAAS) Product

Line: A Case Study," Defense Technical Information Center, Pittsburgh, 2005.

[55] A. S. J. van Heerden, M. D. Guenov and A. Molina-Cristóbal, "Evolvability and design reuse in civil jet

transport aircraft," Progress in Aerospace Sciences, vol. 108, pp. 121-155, July 2019.

[56] G. Candido, A. W. Colombo, J. Barata and F. Jammes, "Service-Oriented Infrastructure to Support the

Deployment of Evolvable Production Systems," IEEE Transactions on Industrial Informatics, vol. 7, no. 4,

pp. 759-767, 2011.

[57] M. Saturno, V. Pertel, F. Deschamps and E. Rocha Loures, "Proposal of an automation solutions

architecture for Industry 4.0," DEStech Transactions on Engineering and Technology Research, vol. 14,

no. 2, pp. 185-195, 2018.

[58] A. Rahatulain and M. Onori, "Production System Innovation Through Evolvability: Existing Challenges

and Requirements," Journal of Machine Engineering, vol. 15, no. 3, pp. 50-64, 2015.

[59] R. Queiroz, T. Cruz, J. Mendes, P. Sousa and P. Simões, "Container-based Virtualization for Real-time

Industrial Systems — A Systematic Review," ACM Computing Surveys, vol. 56, no. 3, pp. 1-38, 2023.

[60] T. Salah, M. Jamal Zemerly, C. Y. Yeun, M. Al-Qutayri and Y. Al-Hammadi, "The evolution of distributed

systems towards microservices architecture," in 2016 11th International Conference for Internet

Technology and Secured Transactions (ICITST), Barcelona, Spain, 2016.

[61] "Architectural pattern," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Architectural_pattern. [Accessed 05 12 2023].

[62] V. Cebotari and S. Kugele, "On the Nature of Automotive Service Architectures," in 2019 IEEE

International Conference on Software Architecture Companion (ICSA-C), Hamburg, Germany, 2019.

[63] S. Kugele, P. Obergfell, M. Broy, O. Creighton, M. Traub and W. Hopfensitz, "On Service-Orientation for

Automotive Software," in 2017 IEEE International Conference on Software Architecture (ICSA),

Gothenburg, Sweden, 2017.

[64] J. Bogner, J. Fritzsch, S. Wagner and A. Zimmermann, "Assuring the Evolvability of Microservices:

Insights into Industry Practices and Challenges," in 2019 IEEE International Conference on Software

Maintenance and Evolution (ICSME), Cleveland, OH, USA, 2019.

[65] L. De Simone and G. Mazzeo, "Isolating Real-Time Safety-Critical Embedded Systems via SGX-Based

Lightweight Virtualization," in 2019 IEEE International Symposium on Software Reliability Engineering

Workshops (ISSREW), Berlin, Germany, 2019.

[66] C. A. Garcia, M. V. Garcia, E. Irisarri, F. Pérez, M. Marcos and E. Estevez, "Flexible Container Platform

Architecture for Industrial Robot Control," in 2018 IEEE 23rd International Conference on Emerging

Technologies and Factory Automation (ETFA), Turin, Italy, 2018.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 49 of 50 2023-12-19

[67] S. Kugele, D. Marmsoler, N. Mata and K. Werther, "Verification of component architectures using

mode-based contracts," in 2016 ACM/IEEE International Conference on Formal Methods and Models for

System Design (MEMOCODE), Kanpur, India, 2016.

[68] F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux, F. Gallo, H. Garavel and C. Occhipinti, "ArchWare:

Architecting Evolvable Software," in Software Architecture, First European Workshop, EWSA 2004, St

Andrews, UK, 2004.

[69] A. Grewe, C. Knieke, M. Korner and A. Rausch, "Automotive Software Product Line Architecture

Evolution: Extracting, Designing and Managing Architectural Concepts," International Journal on

Advances in Intelligent Systems, vol. 10, no. 3 & 4, pp. 203-222, 2017.

[70] H. P. Breivold, I. Crnkovic and M. Larsson, "Software Architecture Evolution through Evolvability

Analysis," Journal of Systems and Software, vol. 85, no. 11, pp. 2574-2592, November 2012.

[71] P. Hruschka, "Quality Driven Software Architecture," in Software Quality. Process Automation in

Software Development, Berlin, Heidelberg, Springer Berlin Heidelberg, 2012, pp. 10-13.

[72] J. Borky, R. Lachenmaier, J. Messing and A. Frink, "Architectures for next generation military avionics

systems," in 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339), Snowmass, CO, USA,

1998.

[73] J. Engle and T. Moseman, "An affordable and flexible architecture for deep space exploration," in 2016

IEEE Aerospace Conference, Big Sky, MT, USA, 2016.

[74] J. Chaplin, O. Bakker, L. de Silva, D. Sanderson, E. Kelly, B. Logan and S. Ratche, "Evolvable Assembly

Systems: A Distributed Architecture for Intelligent Manufacturing," IFAC-PapersOnLine, vol. 48, no. 3,

pp. 2065-2070, 2015.

[75] R. Morrison, G. Kirby, D. Balasubramaniam, K. Mickan, F. Oquendo, S. Cimpan, B. Warboys, B. Snowdon

and R. Greenwood, "Support for evolving software architectures in the ArchWare ADL," in Proceedings.

Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA 2004), Oslo, Norway, 2004.

[76] E. Bouwers and A. van Deursen, "A Lightweight Sanity Check for Implemented Architectures," IEEE

Software, vol. 27, no. 4, pp. 44-50, 2010.

[77] H. P. Breivold, I. Crnkovic and P. J. Eriksson, "Analyzing Software Evolvability," in 2008 32nd Annual IEEE

International Computer Software and Applications Conference, Turku, Finland, 2008.

[78] T. Gaska, "Optimizing an incremental modular open system approach (MOSA) in avionics systems for

balanced architecture decisions," in 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC),

Williamsburg, VA, USA, 2012.

[79] J. Beesemyer, D. Fulcoly, A. Ross and D. Rhodes, "Developing Methods to Design for Evolvability:

Research Approach and Preliminary Design Principles," in 9th Conference on Systems Engineering

Research, Los Angeles, CA, 2011.

Contract No. HE – 101102001

FP2-WP29-D-SMO-002-01 Page 50 of 50 2023-12-19

[80] K. Schmid, I. John, R. Kolb and G. Meier, "Introducing the PuLSE Approach to an Embedded System

Population at Testo AG," in ICSE '05: Proceedings of the 27th international conference on Software

engineering, St. Louis, USA, 2005.

[81] M. Gagliardi, R. Rajkumar and L. Sha, "Designing for evolvability: building blocks for evolvable real-time

systems," in Proceedings Real-Time Technology and Applications, Brookline, MA, USA, 1996.

[82] M. Lahami and M. Krichen, "Test Isolation Policy for Safe Runtime Validation of Evolvable Software

Systems," in 2013 Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises,

Hammamet, Tunisia, 2013.

[83] L. Sha, R. Rajkumar and M. Gagliardi, "Evolving dependable real-time systems," in 1996 IEEE Aerospace

Applications Conference. Proceedings, Aspen, CO, USA, 1996.

[84] S. Kugele, G. Pucea, R. Popa, L. Dieudonné and H. Eckardt, "On the deployment problem of embedded

systems," in 2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign

(MEMOCODE), Austin, TX, USA, 2015.

[85] L. Chung, K. Cooper and A. Yi, "Developing adaptable software architectures using design patterns: an

NFR approach," Computer Standards & Interfaces, vol. 25, no. 3, pp. 253-260, 2003.

[86] N. Antzoulatos, E. Castro, D. Scrimieri and S. Ratchev, "A multi-agent architecture for plug and produce

on an industrial assembly platform," Prod. Eng. Res. Devel. 8, p. 773–781, 2014.

[87] Plattform Industrie 4.0, "RAMI 4.0," [Online]. Available: https://www.plattform-

i40.de/IP/Redaktion/DE/Downloads/Publikation/rami40-eine-einfuehrung.pdf.

[88] P. Bengtsson, N. Lassing, J. Bosch and H. van Vliet, "Architecture-level modifiability analysis (ALMA),"

Journal of Systems and Software, vol. 69, no. 1-2, pp. 129-147, 2004.

[89] N. Lassing, D. Rijsenbrij and H. van Vliet, "How well can we predict changes at architecture design

time?," Journal of Systems and Software, vol. 65, no. 2, pp. 141-153, 2003.

[90] H. Pei-Breivold and I. Crnkovic, "An Extended Quantitative Analysis Approach for Architecting Evolvable

Software Systems," in Computing Professionals Conference Workshop on Industrial Software Evolution

and Maintenance Processes (WISEMP10), IEEE, 2010.

[91] H. P. Breivold, I. Crnkovic, R. Land and M. Larsson, "Analyzing Software Evolvability of an Industrial

Automation Control System: A Case Study," in 2008 The Third International Conference on Software

Engineering Advances, Sliema, Malta, 2008.

[92] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner and G. Saake, "Measuring Non-Functional

Properties in Software Product Line for Product Derivation," in 2008 15th Asia-Pacific Software

Engineering Conference, Beijing, China, 2008.

