

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 1 of 22 2023-12-19

Rail to Digital automated up to autonomous train

operation

D29.1 – List of user stories and requirements

Due date of deliverable: 2023-06-01

Actual submission date: 2023-07-13

Leader/Responsible of this Deliverable: Roelle, H.; SMO

Reviewed: Y

Document status

Revision Date Description

01 2023-07-13 Filed to TMT (reviewed by WP members)

02 2023-12-19 Revised after TMT comments and reviewed by all WP members

Project funded from the European Union’s Horizon Europe research and innovation

programme

Dissemination Level

PU Public X

SEN Sensitiv – limited under the conditions of the Grant Agreement

Start date: 2022-12-01 Duration: 42 months

Ref. Ares(2023)8794059 - 21/12/2023

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 2 of 22 2023-12-19

ACKNOWLEDGEMENTS

This project has received funding from the Europe’s Rail Joint Undertaking

(ERJU) under the Grant Agreement no. 101102001. The JU receives support

from the European Union’s Horizon Europe research and innovation programme

and the Europe’s Rail JU members other than the Union.

REPORT CONTRIBUTORS

Name Company Details of Contribution

Arrizabalaga, Saioa CEIT User stories, DevOps, 2nd opinion, review

Figueroa, Santiago CEIT User stories, DevOps, 2nd opinion, review

Roelle, Harald SMO User stories, Architecture drivers, 2nd
opinion, review

Oertel, Norbert SMO User stories, Architecture drivers, 2nd
opinion, review

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the

information is fit for any particular purpose. The content of this document reflects only the author’s

view – the Joint Undertaking is not responsible for any use that may be made of the information it

contains. The users use the information at their sole risk and liability.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 3 of 22 2023-12-19

EXECUTIVE SUMMARY

“Software eats the world!” This is a rather drastic statement which appears to be inline with

recent developments in the rail domain. There is a clear trend to shift to software defined

train control functions and there is an increasing number of IT systems on-board the trains.

In contrast to classical, wayside non-rail IT systems (e.g., Netflix deploying to their main

application in the magnitude of minutes!), the software on trains has a very long life-time,

but still needs to be able to respond to frequent updates due to security fixes and upcoming

new features required by customers. In addition there are onboard domains where life-time

has become much shorter than with others (e.g. passenger entertainment vs. core traction

control).

In this deliverable the working group has collected a number of user stories, which will serve

as a guidance for the upcoming investigation into how we can make the architecture of our

SW systems more responsive to change, to be more ‘evolvable’.

Further, the working group has discussed reasons for why architecting for evolution is

actually a necessity. Partly because the amount of software systems is continuously

growing, but also because it is simply not feasible to predict the future. Considering every

possible variability is not possible for a number of good reasons – the SW architecture needs

to be evolvable at some point in the future when a certain change in requirements or

constraints is happening.

The group has collected best practices from other domains, the DevOps approach, which

addresses similar problems in a holistic way. DevOps considers, besides architecture, also

organization and processes.

The constraints and non-functional requirements between this domain and the railway

domain appear to be different, however, the main drivers for evolvability remain the same.

The working group sees a large potential of re-interpreting and applying DevOps principles

and related architectural styles to the rail domain in order to

• improve engineering efficiency,

• reduce time-to-market for new features and changes,

• and overall increase the evolvability of on-train SW systems.

For the further work on “architecting for evolution” the working group has refined and

documented the definition of scope, collected user stories and architecture driving non-

functional properties, as set out in this deliverable.

Next step will be to analyze DevOps processes more deeply and map these onto existing

processes in the rail domain.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 4 of 22 2023-12-19

ABBREVIATIONS AND ACRONYMS

ATO Automatic Train Operation

R2DATO Rail to Digital automated up to autonomous train operation

TOC Train Operating Company1

SW Software

HW Hardware

DevOps Development and Operations (Methodology)

1 The term “TOC“ was chosen intentionally. To make clear that in commercial setups where responsibility for
the track and responsibility for the trains is within different companies, that the interests of train running
company are addressed.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 5 of 22 2023-12-19

TABLE OF CONTENTS

Acknowledgements ... 2

Report Contributors ... 2

Executive Summary .. 3

Abbreviations and Acronyms .. 4

Table of Contents.. 5

List of Figures ... 6

List of Tables .. 6

2 Introduction ... 7

3 Definition of core concepts .. 9

3.1 Evolution of Architecture ... 9

3.2 DevOps... 10

3.3 Software Engineering in the Rail Domain .. 11

4 Scoping of the work package .. 12

5 List of relevant user stories.. 14

5.1 Structure of user stories .. 14

5.2 User stories .. 15

6 Main architectural drivers .. 19

7 Conclusions .. 21

References ... 22

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 6 of 22 2023-12-19

LIST OF FIGURES

Figure 1 Successful Software Development Triangle [1] ... 11

LIST OF TABLES

Table 1 List of user stories .. 18

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 7 of 22 2023-12-19

2 INTRODUCTION

Rail industry and rail operators face significant challenges that result in conflicting time

scales for operations (long, with the need for adaptions and changes over decades) on the

one hand, and realization of new features and fixes (short, shall be brought into the field

much faster than today) on the other hand. For the long timescale we propose to explore

ways to improve the evolvability of architectures and for the quick realization we propose

to focus on ideas from the DevOps approach. Both must be done consistently with

requirements from standards and regulations, harsh environment, safety-criticality and

long lifetime. To determine the right granularity of being technology-independent while

preserving applicability in practice will be the key question.

In this work package we constrain ourselves to on-board systems. With these there are

special limitations, especially in contrast to IT-systems, involved:

• For systems in the rail domain in general, see 3.3

• In contrast to wayside systems, on-board systems are not always connected to the

wayside with high bandwidth/quality or not connected at all (e.g. by quality of

LTE/5G links, or trains being completely shut down when not in service). This gives

additional constraints, especially when homogeneity across a whole fleet is required

or at least desired.

So, constraining to on-board systems causes no harm as this is the most challenging

case. Being specific for the rail domain, it shall be easy to transfer and apply the results for

the wayside.

On the Rail-industrial DevOps aspect:

• Tackling realization time in rail industry products is not only about architecture and

runtime environments but also about development process or in general how the

assets are realized while will show up on train. Additionally, lead times are heavily

influenced by certification and homologation.

• There is much to learn from “ordinary” IT business. The advantages of agile

processes, combined with the ideas of continuous development, cont. build, cont.

test, cont. deployment, continuous integration mark a significant leap there. Taking

these ideas even further into operations led to the concept of DevOps.

• Also in the railway industry, the DevOps idea as such has a great potential.

• But the basic idea of expanding continuous-X into operations needs adequate

adaptation for rail business’ surroundings.

On the Architecting4evolution aspect:

• Avoiding disruptive changes of rail sector’s long living systems implies they need to

be intrinsically evolvable.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 8 of 22 2023-12-19

• Change and evolution should be explicitly tangible in a software architecture – to

make it manageable.

Design goals for evolution include:

• Design modules and services as autonomous units.

• Encapsulate uncertainty, risk and change.

• Minimize need for explicit adaption.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 9 of 22 2023-12-19

3 DEFINITION OF CORE CONCEPTS

3.1 EVOLUTION OF ARCHITECTURE

“Design for evolution” is key for designing systems with

long lifetime and “never-goes-obsolete” requirements.

We strongly believe in this statement, and to understand the reason behind, one can look

at a widely used alternative: The universal and generic approach that tries to build all

variability and flexibility explicitly in. Unfortunately, this has significant shortcomings:

▪ It introduces much unnecessary variability, because over a long lifetime the actual

needed features and properties are hard to estimate beforehand.

▪ It lacks variability for the same reason.

▪ Not hitting the necessary extent and kind of variability, this introduces accidental

complexity and technical debt.

▪ With unneeded complexity and technical debt, non-functional properties like

performance and robustness are unnecessarily impaired.

Therefore, for a software architecture to be evolvable, it needs to support change, for

example:

▪ Ease of adding new functions and taking out old functions.

▪ Ease of migration to new versions, or new technologies.

▪ Ease of supporting new deployment scenarios.

Change is considered mostly harmful. To make change manageable, change and

evolution must be explicitly addressed in the software architecture. To achieve this goal,

we believe that the following architectural design goals shall be considered:

• Single Responsibility Principle – there should be a single reason for changing a SW

component, module, service or interface. The scope or granularity of this ‘single

reason’ scales with the scope of the unit under consideration.

• Open-closed principle – Be open for extension of SW assets and interfaces but

closed for modification.

• Interface design shall follow the Liskov Substitution Principle, such that an entity

may be replaced by a functionally extended version of itself.

• Be aware of implicit and explicit coupling and reduce the grade of coupling where

possible.

• Encapsulate uncertainty, risk and change. Most interesting is not the choice

between A and B, but the fact that there -is- a choice between A and B.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 10 of 22 2023-12-19

3.2 DEVOPS

DevOps (the combination of Development and Operations) is a methodology, a set of tools

and practices with a focus on reducing time to market for product features, even when the

product as a such is already deployed and available on the market. It has gained much

attention in the IT-industry in past years, even a standard emerged about (ISO/IEC/IEEE

32675).

The combination of development and operations into a wholistic methodology shortens the

feedback cycle between operating a product and how it is used, and the development

responsible for developing new product features and fixing any existing issues. The

methodology does not per se imply a specific architectural style. Certain architectural

styles have however got momentum due to the DevOps movement, e.g., microservices

based architectures.

Microservice based architectures organize an application into a collection of individual

services or microservices. These microservices are highly maintainable and testable, are

loosely coupled, independently deployable, organized around business capabilities and

owned by a small team. They therefore allow to replace and evolve parts of the

architecture during operations, ideally with zero downtime. The applicability of this

architectural style depends on the application’s business logic, considering elements such

as application complexity and rapid, frequent and reliable delivery over a long period of

time.

DevOps is not limited to Microservices architectures, as the methodology can also be

applied to monolithic architectures.

When discussing the architectural aspects of DevOps, one must not forget that

architecture is entangled with adequate forms of organization and processes as depicted

in Figure 1.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 11 of 22 2023-12-19

Figure 1 Successful Software Development Triangle [1]

The book DevOps Handbook ([2]) establishes a relation between process and DevOps in

the “Successful Software Development” triangle context. The Team Topologies book ([3])

describes a high-performance IT organization is a loosely coupled network of small,

autonomous, and empowered teams. Each team is relatively small, ideally five to nine

people. That number is chosen because research shows that small teams promote trust,

which is essential for high productivity. Also, each team should be long-lived because it

takes time for a team to become highly effective. But mitigating the risk on team stability is

a risk that general management / human resources need to address and cannot be dealt

with in this work package.

Key to DevOps processes is process automation. This is especially important for

development, build, deployment and testing processes, which requires adequate

infrastructure and tools.

3.3 SOFTWARE ENGINEERING IN THE RAIL DOMAIN

SW Engineering in the rail domain is fundamentally different from the engineering of cloud-

based services or classical IT systems. The key differences are:

• It is not only SW engineering, but SW engineering embedded into an overall system

engineering context.

• The development process is dominated by V-model and formal homologation.

• The resulting SW system needs to be designed to live for a very long time, typically

in the order of 30 years. Frequent updates are required to fix security issues or to

meet new customer requirements which emerge over time.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 12 of 22 2023-12-19

• The systems engineering aspect increases the number of drivers for evolution, e.g.

due to obsolescence of underlaying HW components.

• HW selection and compute performance is limited due to rail specific constraints

(passive cooling, temperature ranges, etc.).

• Trend to increased number of IT systems and even more frequent updates and

extensions of functionality.

• SW in the rail domain is not a product business, but a multi-project solution

business.

• It is a low-volume business compared to the automotive domain.

Despite these key differences we see many of the same drivers for DevOps as described
in section 3.1. Therefore, we see a large potential of re-interpreting and applying DevOps
principles and related architectural styles in order to

• improve engineering efficiency,

• reduce time-to-market for new features and changes,

• and overall increase the evolvability of on-train SW systems.

This motivates to investigate IT-DevOps principle and methodologies and how these could

be adapted to the rail domain.

4 SCOPING OF THE WORK PACKAGE

The scope of the work package is defined to be:

• We are limiting ourselves to the SW-Engineering aspect - constraints stemming

from the overall systems engineering context will be considered.

o SW development, deployment, and testing processes.

o SW architecture with a focus on the key design principles as laid out in

section 3.1.

o Process automation and required tooling.

• We are limiting ourselves to on-train SW systems, in contrast to wayside SW

systems.

• Derived from the user stories in section 5.2 we will consider the following scenarios

or design aspects:

o Distributed system aspects

o SW deployment scenarios

o SW configuration and parameterization

o SW updates

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 13 of 22 2023-12-19

o SW monitoring

• Not reinventing the wheel – deep dive into what can be re-used and /or adapted

from existing process frameworks, technologies and methodologies!

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 14 of 22 2023-12-19

5 LIST OF RELEVANT USER STORIES

5.1 STRUCTURE OF USER STORIES

The user stories presented in this chapter follow an easy to comprehend structure:

1. ID: Identification number of the respective user story for future reference.

2. Actor: The acting role of the user story, respectively the mainly interested role. One or more

of the following stakeholders:

- Train manufacturer

- Train operating company (TOC)

- Homologation body

- Maintainer

3. User Story: The user story itself, written in the form: "As a <role>, I want <goal/desire> so

that <benefit>"

4. Driver 1 and 2: One or two main drivers/motivation of the stakeholder for submitting the story.

These drivers in most cases are desirable or constraining quality attributes; in addition, they

may also be business drivers.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 15 of 22 2023-12-19

5.2 USER STORIES

ID Actor User Story Driver 1 Driver 2

10000
Train
Manufacturer

As a train manufacturer, I want to be able to keep multiple projects' SW
aligned with a reference base without impacting on-train components of
other stakeholders, e.g., TOCs, so that I can minimize internal maintenance
efforts while keeping already achieved quality.

Maintainability Engineering Efficiency

10001
Train
Manufacturer

As a train manufacturer, I want to efficiently port the train SW to new HW
platforms, so that I can evolve with improved non-functional properties and
deal with HW obsolescence over time.

Obsolescence
Management

Portability

10002
Train
Manufacturer

As a train manufacturer, I want to have support for efficient impact analysis
of changes, so that I can provide the necessary information to homologation
bodies.

Verifiability Engineering Efficiency

10003
Train
Manufacturer

As a train manufacturer, I want to have support to efficiently tailor the SW
and system architecture, so that I can efficiently handle new train projects
with varying train topologies.

Adaptability Engineering Efficiency

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 16 of 22 2023-12-19

ID Actor User Story Driver 1 Driver 2

10004
Train
Manufacturer

As a train manufacturer, I want to have well defined and documented
variation points, so that I can implement project specific extensions without
changing the overall system and SW-architecture.

Extensibility Maintainability

10005
Train
Manufacturer

As a train manufacturer, I want to be able to change parts of the SW
architecture so that (re-)homologation can be kept to a minimum or is not
needed at all.

Changeability Compatibility

10006
Train
Manufacturer

As a train manufacturer I want to exchange SW components without
impacting other components, so that test effort can be minimized and re-
homologation is not required.

Changeability Verifiability

10007
Train
Manufacturer

As a train manufacturer, I want to generate a security release of a train
software in minimum time, so that train functionality is not changed and re-
homologation is not required.

Maintainability Verifiability

10008
Train
Manufacturer

As a train manufacturer, I want to integrate third-party components with
standardized interfaces, so that I don’t have to adapt to 3rd party specific
interfaces.

Engineering Efficiency Compatibility

10009
Train
Manufacturer

As a train manufacturer, I want to verify functional and non-functional
features of the SW before deploy it on the train.

Testability Verifiability

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 17 of 22 2023-12-19

ID Actor User Story Driver 1 Driver 2

10010
Train
Manufacturer

As a train manufacturer, I want to automate the deployment of the SW on
every train and have the tools to monitor and observe the deployment
process.

Changeability Diagnosability

10011
Homologation
Body

As a homologation body, I want to see concise, precise, traceable, and
comprehensible documentation, so that I can efficiently decide on
homologation aspects of the project.

Homologation Traceability

10012 TOC
As a TOC, I want to be able to deploy SW/applications on a train without
breaking homologation status or negatively influencing other components, so
that I can swiftly roll out applications satisfying upcoming customer demands.

Extensibility Homologation

10013 TOC
As a TOC, I want to receive security patches quickly and want to apply them
short term without harming vehicle operation, so that my trains are always in
line with security's state-of-the-art.

Maintainability Minimal service outage

10014 TOC
As a TOC, I want to change the system behavior in a timely manner without a
SW update, so that I can adapt to changing operational needs.

Configurability Changeability

10015 Maintainer
As a maintainer, I want to replace hardware or software with functionally and
non-functionally equivalent parts without compromising the overall system
behavior, so that I can handle cases of obsolescence.

Compatibility Maintainability

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 18 of 22 2023-12-19

ID Actor User Story Driver 1 Driver 2

10016 Maintainer
As a maintainer, I want to efficiently exchange devices of the system with
spare parts, so that I can repair diagnosed defects.

Maintainability Compatibility

10017 Maintainer
As a maintainer, I want to have precise diagnostic information, so that I can
accurately replace defect components.

Diagnosability Traceability

10018 Maintainer
As a maintainer, I want to have a low variety of spare parts, so that required
logistics and warehousing is cost efficient.

Maintainability Compatibility

Table 1 List of user stories

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 19 of 22 2023-12-19

6 MAIN ARCHITECTURAL DRIVERS

Architectural drivers from DevOps’s current application domains (mostly IT) differ from

those in the railway industry. E.g., micro services architectures support IT industry’s

drivers quite well, while using micro services in the railway domain needs an in-depth

analysis whether the different/additional drivers are equally well served, and constraints

can be met.

As can be concluded from section 3.3, the main difference between the development of

cloud-based IT-systems and on-board train software are non-functional requirements and

constraints. These affect all aspects of building, delivering and operating on-train SW,

especially the development process, verification and validation processes (testing), the

homologation process and operational qualities of the final product in service and

maintenance.

This is also reflected in Table 1, which in most cases lists quality attributes (non-functional

properties) as main drivers for submitting the user story.

The main business goals which need to be addressed, are:

• Engineering efficiency and obsolescence management for the train

manufacturer

o Improved time to market

o Lower cost

o Lower effort and cost for software maintenance

o Quick response to security issues and new feature requests

o Efficiently deal with obsolescence issues

• Increased flexibility for the train operating company (TOC)

o Offer new value-added services quickly

o Lower cost

o Lower effort and cost for integrating such services into the train

o Reduced manual maintenance intervention

o Increased availability due to reduced maintenance downtimes

Some ubiquitous non-functional properties are not explicitly mentioned as drivers in the list

of user stories. These include, but are not limited to:

• Security: All activities must maintain an adequate level of security. Since trains are

critical infrastructure and the number of cyberthreats are continuously increasing

this is of increasing importance as an architectural driver.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 20 of 22 2023-12-19

• Performance: For any activity that is constrained by a certain execution time or

requires certain performance properties. In contrast to wayside IT systems, the

compute performance on-train is severely limited due to constraints like power

consumption and heat dissipation.

• Safety and homologation: For any activity that is constrained by a certain safety

level, the architecture needs to support and protect this in an adequate way.

Towards operations this also means an adequate support for homologation.

The non-functional properties listed in Table 1 are (in alphabetical order):

• Adaptability: Be able to adapt the software platform quickly to a concrete project

context.

• Changeability: Efficiently change the software to add new features, project specific

customizations, bug- and security-fixes. Change must be managed, and the

architecture needs to be prepared for evolutional change pressure.

• Compatibility: Standardized interfaces to 3rd party components and systems, as

well as customer IT systems on-board, ensure that efforts for adaptation are kept

low.

• Configurability: Change defined characteristics of the SW system during

operations, ideally without the need for a SW update.

• Diagnosability: Besides the typical usage of diagnostics information for

maintenance purposes it is important to increase the feedback from operations to

the development to answer questions like “Am I still fit for evolution, or am I already

close to the limits?”

• Extensibility: Efficiently add new SW systems without affecting the installed SW

base and the requirement for re-homologation.

• Maintainability: The SW system needs to be maintained for decades. At the same

time maintainability needs to consider constant and frequent change due to the

increasing trend of digitalization and emerging new technologies.

• Portability: The SW system needs to be portable to newly emerging HW platforms

quickly and easily.

• Testability: Efficient and automated deployment of SW into a test environment

ensures a short feedback loop back to software development.

• Traceability: Change needs to be traceable to manage change over the lifetime of

the software, and to facilitate efficient impact analysis and swift homologation.

• Verifiability: Efficiently and reliably proof that the SW system fulfils regulatory and

customer requirements.

The property of “minimal service outage” is addressed by the sum of the above properties.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 21 of 22 2023-12-19

7 CONCLUSIONS

DevOps as used in the IT-industry needs a heavy re-interpretation for the railway domain.

It is not immediately applicable in its current form (see section 3.3).

In addition, DevOps as defined by ISO/IEC/IEEE 32675 neither delivers such an industrial

interpretation but only high-level definitions. It lacks concrete technologies/tools etc. which

must be defined for a railway specific application.

WP29 cannot apply DevOps to all railway domain processes. WP29 will focus on the SW

engineering process guided by architectural principles (section 3.1) and scenarios/aspects

derived from the user stories (section 5.2).4.

Architectural drivers from DevOps’s current application domains (mostly IT) differ from

those in the railway industry. E.g., micro services architectures support IT industry’s

drivers quite well, while using micro services in the railway domain needs an in-depth

analysis whether the different/additional drivers are equally well served, and constraints

can be met.

Contract No. HE – 101102001

FP2-WP29-D-SMO-004-01 Page 22 of 22 2023-12-19

REFERENCES

[1] Chris Richardson, Microservices patterns, https://microservices.io/book.

[2] Gene Kim, Jez Humble, Patric Debois, John Willis, Nicole Forsgren, The DevOps Handbook, Second

Edition, https://itrevolution.com/product/the-devops-handbook-second-edition/

[3] Matthew Skelton and Manuel Pais, Team Topologies, https://teamtopologies.com/

https://itrevolution.com/product/the-devops-handbook-second-edition/

